Sample-efficient Reinforcement Learning with Implicitly Quantized Representations

Aidan Scannell, Mohammadreza Nakhaei, Kalle Kujanpää, Yi Zhao, Kevin Luck, Arno Solin, Joni Pajarinen

Aidan Scannell

Finnish Center for Artificial Intelligence (FCAI) Aalto University

Motivation: Robotic Manipulation

button press door open

pick place

FCAI

push

reach

peg insert side

Motivation: Robotic Manipulation

button press door open

pick place

FCAI

push

reach

peg insert side

States $s \in \mathcal{S}$

Reinforcement Learning (RL) Markov Decision Process (MDP) States $s \in \mathcal{S}$ Actions $a \in \mathscr{A}$

Reinforcement Learning (RL) Markov Decision Process (MDP) States $s \in \mathcal{S}$ Actions $a \in \mathscr{A}$ Policy $\pi: \mathcal{S} \to \mathcal{A}$

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$ $S_{t+1},$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$ $S_{t+1},$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Goal:

States $s \in \mathcal{S}$

- Actions $a \in \mathscr{A}$ $S_{t+1},$
- Policy $\pi: \mathcal{S} \to \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Discount factor $\gamma \in [0,1]$

Goal:

 π

fcai.fi

t=0

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

In model-based RL

 $S_{t+1},$

Discount factor $\gamma \in [0,1]$

Goal:

ma

Transition function

$$\max_{\pi} \mathbb{E}_{\pi,P} \Big[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s, \pi \Big]$$

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

In model-based RL

 $S_{t+1},$

Discount factor $\gamma \in [0,1]$

Goal:

ma

$$\max_{\pi} \mathbb{E}_{\pi, P_{\phi}} \Big[\sum_{t=0}^{\infty} \gamma^{t} r_{\xi}(s_{t}, a_{t}) \mid s_{0} = s, \pi \Big]$$

$\mathsf{Codebook}\ \mathscr{C}$

$\begin{array}{c} \textbf{Codebook} \ \ensuremath{\mathscr{C}} \\ \textbf{c}^{(1)} \\ \textbf{c}^{(2)} \\ \textbf{c}^{(3)} \end{array}$

DCWM: World Model Training Codebook \mathscr{C}

0

Results: Overview Strong Performance in DMControl and MetaWorld Manipulation Tasks

pick place

drawer close

drawer open

peg insert side

push

reach

window open

window close

Results: Overview Strong Performance in DMControl and MetaWorld Manipulation Tasks

pick place

drawer close

drawer open

peg insert side

push

reach

window open

window close

Why Does DCWM Work So Well? Combination of Discrete Representation and Cross Entropy Loss

Why Does DCWM Work So Well? **Combination of Discrete Representation and Cross Entropy Loss**

FCAI

Main Takeaway:

Learning discrete codebook encodings with a selfsupervised cross-entropy loss improves sample efficiency in continuous control tasks

Main Takeaway:

Learning discrete codebook encodings with a selfsupervised cross-entropy loss improves sample efficiency in continuous control tasks

Email: <u>aidan.scannell@aalto.fi</u>

Website: www.aidanscannell.com

Results: DeepMind Control Suite Strong Performance in Hard DMControl Tasks

FCAI

Results: DeepMind Control Suite Strong Performance in Hard DMControl Tasks

FCAI

Results: MetaWorld Competitive Performance in Robotic Manipulation

Results: MetaWorld Competitive Performance in Robotic Manipulation

$$e_{code} = c^{(2)} = \{-0.5\}$$

5,1}

 $\mathbf{e}_{\text{code}} = \mathbf{c}^{(2)} = \{-0.5, 1\}$

 $e_{\text{label}} = 2$

 $\mathbf{e}_{\text{code}} = \mathbf{c}^{(2)} = \{-0.5, 1\}$ $e_{\text{label}} = 2$

 $\mathbf{e}_{\text{code}} = \mathbf{c}^{(2)} = \{-0.5, 1\}$ $e_{\text{label}} = 2$ Dog Run

Results: Latent Space Size DCWM is Fairly Robust to its Latent Space Size

FCAI

DCWM: Discrete Codebook World Model

Encoder

 $\mathbf{x}_t = e_{\theta}(\mathbf{s}_t) \in \mathbb{R}^{d \times b}$

)

15

Encoder

$$\mathbf{x}_t = e_{\theta}(\mathbf{s}_t) \in \mathbb{R}^{d \times t}$$

Latent quantization $\mathbf{c}_t = f(\mathbf{x}_t) \in \mathscr{C}$

b

15

$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1, \dots, p_{|\mathscr{C}|}) \text{ with } p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(i)} | \mathbf{c}_t, \mathbf{a}_t)$

$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1, \dots, p_{|\mathscr{C}|}) \text{ with } p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(i)} | \mathbf{c}_t, \mathbf{a}_t)$

$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1, \dots, p_{|\mathcal{C}|}) \text{ with } p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(l)} | \mathbf{c}_t, \mathbf{a}_t)$

$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1, \dots, p_{|\mathscr{C}|}) \text{ with } p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(i)} | \mathbf{c}_t, \mathbf{a}_t)$

Encoder

Encoder

$$\mathbf{x}_t = e_{\theta}(\mathbf{s}_t)$$

Latent quantization

$$\mathbf{c}_t = f(\mathbf{x}_t) \in \mathscr{C}$$

$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1, \dots, p_{|\mathscr{C}|}) \text{ with } p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(i)} \mid \mathbf{c}_t, \mathbf{a}_t)$

$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1, \dots, p_{|\mathscr{C}|}) \text{ with } p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(i)} \mid \mathbf{c}_t, \mathbf{a}_t)$

Encoder	$\mathbf{x}_t = e_{\theta}(\mathbf{s}_t)$
Latent quantization	$\mathbf{c}_t = f(\mathbf{x}_t) \in \mathscr{C}$
Dynamics	$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1,$
Reward	$\hat{r}_{t+1} = R_{\xi}(\mathbf{c}_t, \mathbf{a}_t)$
Critic	$q_t = Q_{\psi}(\mathbf{c}_t, \mathbf{a}_t)$

$\dots, p_{|\mathscr{C}|}$ with $p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(i)} | \mathbf{c}_t, \mathbf{a}_t)$

Encoder	$\mathbf{x}_t = e_{\theta}(\mathbf{s}_t)$
Latent quantization	$\mathbf{c}_t = f(\mathbf{x}_t) \in \mathscr{C}$
Dynamics	$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1,$
Reward	$\hat{r}_{t+1} = R_{\xi}(\mathbf{c}_t, \mathbf{a}_t)$
Critic	$q_t = Q_{\psi}(\mathbf{c}_t, \mathbf{a}_t)$
Prior Policy	$\mathbf{a}_t \sim \pi_\eta(\mathbf{a}_t \mid \mathbf{c}_t)$

$\dots, p_{|\mathscr{C}|}$ with $p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(i)} | \mathbf{c}_t, \mathbf{a}_t)$

i. For i in number of episodes

- i. For *i* in number of episodes
 - Collect trajectory $\tau_i = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}, r_t\}_{t=0}^T$ i.

- i. For i in number of episodes
 - i. Collect trajectory $\tau_i = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}, r_t\}_{t=0}^T$
 - ii. Add trajectory to replay buffer $\mathcal{D} \leftarrow \mathcal{D} \cup \tau_i$

- i. For *i* in number of episodes
 - Collect trajectory $\tau_i = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}, r_t\}_{t=0}^{T}$ i.
 - ii. Add trajectory to replay buffer $\mathcal{D} \leftarrow \mathcal{D} \cup \tau_i$
 - iii. Perform T updates to world model

- i. For i in number of episodes
 - i. Collect trajectory $\tau_i = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_t\}$
 - ii. Add trajectory to replay buffer
 - iii. Perform T updates to world model
 - i. Sample batch from replay buffer ${\ensuremath{\mathscr D}}$

$$\mathcal{D} \leftarrow \mathcal{D} \cup \tau_i$$

- i. For i in number of episodes
 - i. Collect trajectory $\tau_i = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_t\}$
 - ii. Add trajectory to replay buffer
 - iii. Perform T updates to world model
 - i. Sample batch from replay buffer ${\mathscr D}$
 - ii. Update encoder, dynamics and reward

$$\mathcal{D} \leftarrow \mathcal{D} \cup \tau_i$$

- i. For *i* in number of episodes
 - Collect trajectory $\tau_i = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_t\}$ İ.
 - ii. Add trajectory to replay buffer \subseteq
 - iii. Perform T updates to world model
 - Sample batch from replay buffer \mathscr{D} Ι.
 - ii. Update encoder, dynamics and reward
 - iii. Update actor and critic

$$\mathcal{D} \leftarrow \mathcal{D} \cup \tau_i$$

For each environment step

For each environment step

Observe state *s*

For each environment step

Observe state *s*

*H***-**1 Plan $a_{0:H}$ to maximise return $\sum \gamma^t r(s_t, a_t) + \gamma^H Q_{\theta}(s_H, a_H)$ t=0

Execute a_0 and discard a_1, \ldots, a_H

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

FCAI

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

FCAI

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

So let's replan.

FCAI

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

So let's replan.

FCAI

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

So let's replan.

FCAI

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

And so on...

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

$$\mathbf{r}_{+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_h, \mathbf{a}_h) \quad \underline{\mathbf{c}}^{(i)}$$

code

$$\mathbf{r}_{+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_h, \mathbf{a}_h) \quad \underline{\mathbf{c}}^{(i)}$$

code prob. of code *i*

ob. of code *i*
mics
$$p(\hat{\mathbf{c}}_2 \mid \hat{\mathbf{c}}_1, \mathbf{a}_1)$$

code

$$\mathbf{c}_{1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_{h}, \mathbf{a}_{h} \quad \underline{\mathbf{c}}^{(i)}$$

$$\mathbf{c}^{(i)} \quad \mathbf{c}^{(i)} \quad \mathbf{c}$$

$$\mathbf{c}^{(i)} = \mathbf{c}^{(i)} | \hat{\mathbf{c}}_h, \mathbf{a}_h \rangle \quad \underline{\mathbf{c}}^{(i)}$$

$$\mathbf{c}^{(i)} = \mathbf{c}^{(i)} | \hat{\mathbf{c}}_h, \mathbf{a}_h \rangle \quad \mathbf{c}^{(i)}$$

$$\mathbf{c}^{(i)} = \mathbf{c}^{(i)} | \hat{\mathbf{c}}_h, \mathbf{a}_h \rangle$$

$$\mathbf{c}^{(i)} = \mathbf{c}^{(i)} | \hat{\mathbf{c}}_h, \mathbf{a}_h \rangle$$

 \hat{r}_2

DCWM: Decision-time Planning Encoder $\mathbb{E}[\hat{\mathbf{c}}_{h+1}] = \sum_{i=0}^{10} \frac{\Pr(\hat{\mathbf{c}}_{h+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_h, \mathbf{a}_h)}{\Pr ob. of code_i} \underbrace{\mathbf{c}^{(i)}}_{\text{code}}$ _ code **X**₀ **a**₁ \mathbf{a}_0 \mathbf{a}_{H-1} Dynamics **Dynamics Dynamics** $\mathbb{E}[\hat{\mathbf{c}}_{H-1}]$ \mathbf{c}_0 $\mathbb{E}[\hat{\mathbf{c}}_1]$ $p(\hat{\mathbf{c}}_2 \mid \hat{\mathbf{c}}_1, \mathbf{a}_1)$ $p(\hat{\mathbf{c}}_H \mid \hat{\mathbf{c}}_{H-1}, \mathbf{a}_{H-1})$ $p(\mathbf{c}_1 \mid \mathbf{c}_0, \mathbf{a}_0)$ FCAI fcai.fi \hat{r}_1 \hat{r}_2

$\mathbb{E}[\hat{\mathbf{c}}_{h+1}] = \sum_{i=0}^{10} \frac{\Pr(\hat{\mathbf{c}}_{h+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_{h}, \mathbf{a}_{h})}{\underbrace{\mathbf{c}^{(i)}}_{\text{prob. of code } i} \underbrace{\mathbf{c}^{(i)}}_{\text{code}}}$ ^code \mathbf{a}_{H-1} Dynamics $\mathbb{E}[\hat{\mathbf{c}}_{H-1}]$ $p(\hat{\mathbf{c}}_2 \mid \hat{\mathbf{c}}_1, \mathbf{a}_1)$ $p(\hat{\mathbf{c}}_H \mid \hat{\mathbf{c}}_{H-1}, \mathbf{a}_{H-1})$ fcai.fi \hat{r}_H \hat{r}_2

$$\mathbf{a}_{H} + \sum_{h=0}^{H-1} \gamma^{h} R_{\xi}(\hat{\mathbf{c}}_{h}, \mathbf{a}_{h})$$

$$\mathbf{c}_{h+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_h, \mathbf{a}_h) \quad \underline{\mathbf{c}}^{(i)}$$

Reward func.

$$\mathbf{a}_{H}) + \sum_{h=0}^{H-1} \gamma^{h} R_{\xi}(\mathbf{\hat{c}}_{h}, \mathbf{a}_{h})$$

$$\mathbf{r}_{+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_h, \mathbf{a}_h) \quad \underbrace{\mathbf{c}^{(i)}}_{}$$

Iteration 1

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 2

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 2

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 2

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 2

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 2

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 2

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 3

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 3

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 3

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 3

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^{i}\}_{i=1}^{N}$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 3

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^{i}\}_{i=1}^{N}$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 3

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^{i}\}_{i=1}^{N}$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Iteration 3

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^{i}\}_{i=1}^{N}$

Evaluate objective $J(\mathbf{a}_{0}^{i}, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

