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TL;DR

Neural networks (NNs) have limitations: estimating uncertainty,

incorporating new data, and avoiding catastrophic forgetting.
Our method, Sparse Function-space Representation (SFR):
1. converts NN to sparse Gaussian process (GP) via dual parameters,

2. has good uncertainty estimates,

3. can incorporate new data without retraining,

4. can maintain a functional representation for continual learning,

5. can be used for uncertainty-guided exploration in model-based RL.

Method

1. Train Neural Network

(a) Inputs in a supervised setting for NNs fw : RD → RC:
D = {(xi, yi)}N

i=1, a data set w/ input xi ∈ RD and output yi ∈ RC;

w ∈ RP , the initial weights of the neural network.

(b) Train: minimize the empirical (regularized) risk:

w∗ = arg minw L(D, w) = arg minw
∑N

i=1 `(fw(xi), yi) + δR(w). (1)

(c) Output: w∗, the Maximum A-Posteriori (MAP) weights of the NN.

2. Convert Neural Network to Gaussian Process

(a) Linearise NN using Laplace-GGN approx at MAP weights w∗,

fw∗(x) ≈ Jw∗(x) w where Jw(x) := [∇wfw(x)]> ∈ RC×P .

(b) Interpret linear model as GP,

µ(x) = 0 and κ(x, x′) = 1
δ

Jw∗(x) J >
w∗(x′),

(c) Formulate GP predictive posterior via dual parameterization,

Ep(fi | y)[fi] = k>
xiα and (2)

Varp(fi | y)[fi] = kii − k>
xi(Kxx + diag(β)−1)−1kxi (3)

3. Sparsify the Gaussian Process

(a) Eqs. 2/3 use all data O(N 3) so sparsify using inducing points,

Ep(fi | y)[fi] ≈ kT

ziK−1
zz αu and (4)

Varp(fi | y)[fi] ≈ kii − k>
zi[K−1

zz − (Kzz + Bu)−1]kzi (5)

with SFR dual parameters,

αu =
N∑

i=1
kzi α̂i and Bu =

N∑
i=1

kzi β̂i kT

zi (6)
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Figure 1: Regression example on an MLP with two hidden layers. Left: Predictions from the
trained neural network. Middle: Our approach summarizes all the training data with the help of a
set of inducing points. The model captures the predictive mean and uncertainty, and (right) makes it
possible to incorporate new data without retraining the model.

SFR NEW DATA

subsets of training data [27], this parameterization allows capturing the contributions from all data37

points into a sparse representation, essential for predictive uncertainty. Crucially, the resulting GP38

directly predicts in the same space as the original trained neural network, with the benefit of avoiding39

the complexity introduced by working in weight-space and the notorious cubic complexity of vanilla40

GPs. Through the dual parameter formulation, we establish a connection between the neural network,41

full GPs, and a sparse approximation similar to sparse variational GPs [67]. We refer to our method42

as Sparse Function-space Representation (SFR)—a sparse GP derived from a trained neural network.43

Moreover, this dual parameterization can be exploited to perform dual conditioning [8], i.e., an44

effective approach for conditioning on new data without needing to retrain the model (see Fig. 1).45

The contributions of this paper are as follows: (i) We introduce SFR, a new approach for building a46

sparse functional representation of a neural network. (ii) We demonstrate that, despite its sparsity,47

our method effectively captures predictive uncertainty, provides a means of updating the model post-48

training, and gives a compact regularizer suitable for continual learning. (iii) We provide extensive49

experiments for showcasing our approach and demonstrate significance and applicability across50

supervised, continual, and reinforcement learning, aiming to stimulate future use of the approach.51

1.1 Related work52

Bayesian deep learning Probabilistic methods in deep learning [74, 49] have recently gained53

increasing attention in the machine learning community as a means for uncertainty quantification54

(e.g., [32, 75]) and model selection (e.g., [27, 2]) with advancements in prior specification (e.g.,55

[9, 45, 46, 20, 48]) and efficient approximate inference under the specified model. Calculating the56

posterior distribution of a Bayesian neural network is usually intractable, and approximate inference57

techniques need to be used, such as variational inference [4], deep ensembles [39], MC dropout [21],58

or Laplace approximation [61, 38, 28]—each with its own set of strengths and weaknesses.59

Function-space methods Function-space perspectives on uncertainty in neural networks often use60

a Laplace-GGN approximation [14], which linearizes a trained neural network around MAP weights61

and approximates the neural network’s Hessian using the generalized Gauss–Newton approximation62

(GGN, [5]). While efficient, the GNN suffers from cubic scaling in parameter count, necessitating63

approximations like Kronecker factorisation [43, 61]. This linear model (with respect to the weights)64

refines predictions and provides uncertainty estimates [27]. It has a convenient interpretation as a GP65

[27, 34, 42]. However, the GP’s cubic O(N3) scaling with data points N requires costly approxima-66

tions, often resorting to using data subsets [27]. In the GP community, sparse approximations have67

mitigated this scaling issue (e.g., [67, 25]), but combining neural network linearization with sparse68

GP methods remains underexplored. Recent work has explored converting NNs to sparse variational69

GPs [52], however, their method requires separately retraining a GP model. Our work addresses this70

by utilizing the GP’s dual parameters [12], previously applied to non-conjugate likelihood models [1].71
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(a) Regression example on an MLPwith two hidden layers. Left: Predictions from the trained neural network. Middle: Our

approach summarizes all the training data with the help of a set of inducing points. The model captures the predictive mean and

uncertainty, and (right) makes it possible to incorporate new data without retraining the model.

Table 1: Comparisons and ablations on UCI data with negative log predictive density (NLPD±std,
lower better). Our SFR is generally on par with the Laplace approximation (BNN/GLM). Moreover,
it performs better than the GP subset method when using a lower number of inducing points. For
clarity, we specify the number of inducing points as a percent M(%) of the training data N .

NN MAP BNN GLM GP subset (GP) SFR (GP)
Data set M(%)

AUSTRALIAN (N = 690, D = 14, C = 2) 5 | | | 0.58±0.06 0.36±0.03

20 | | | 0.41±0.04 0.35±0.04

40 | | | 0.38±0.03 0.35±0.03

60 | | | 0.36±0.04 0.35±0.03

— 0.35±0.06 0.34±0.05 0.35±0.05 — —
BREAST CANCER (N = 683, D = 10, C = 2) 5 | | | 0.43±0.22 0.08±0.04

20 | | | 0.13±0.03 0.08±0.04

40 | | | 0.10±0.04 0.08±0.04

60 | | | 0.09±0.04 0.08±0.04

— 0.09±0.05 0.09±0.05 0.09±0.05 — —
DIGITS (N = 1797, D = 64, C = 10) 5 | | | 0.48±0.04 0.10±0.03

20 | | | 0.16±0.04 0.08±0.03

40 | | | 0.10±0.03 0.08±0.03

60 | | | 0.09±0.03 0.08±0.03

— 0.07±0.04 0.07±0.03 0.07±0.04 — —
GLASS (N = 214, D = 9, C = 6) 5 | | | 1.45±0.10 1.07±0.10

20 | | | 1.19±0.08 0.92±0.11

40 | | | 1.04±0.08 0.90±0.13

60 | | | 0.96±0.12 0.87±0.17

— 1.02±0.41 0.87±0.28 0.82±0.27 — —
IONOSPHERE (N = 351, D = 34, C = 2) 5 | | | 0.63±0.05 0.39±0.04

20 | | | 0.44±0.03 0.39±0.04

40 | | | 0.41±0.03 0.39±0.04

60 | | | 0.41±0.06 0.38±0.04

— 0.38±0.05 0.38±0.05 0.37±0.05 — —
SATELLITE (N = 6435, D = 35, C = 6) 5 | | | 0.72±0.02 0.31±0.02

20 | | | 0.43±0.05 0.31±0.03

40 | | | 0.39±0.04 0.30±0.02

60 | | | 0.35±0.03 0.30±0.02

— 0.24±0.02 0.24±0.02 0.24±0.02 — —
VEHICLE (N = 846, D = 18, C = 4) 5 | | | 1.09±0.23 0.47±0.03

20 | | | 0.61±0.06 0.43±0.02

40 | | | 0.49±0.04 0.43±0.03

60 | | | 0.45±0.01 0.44±0.02

— 0.40±0.06 0.38±0.06 0.37±0.04 — —
WAVEFORM (N = 1000, D = 21, C = 3) 5 | | | 0.61±0.24 0.33±0.03

20 | | | 0.36±0.03 0.32±0.03

40 | | | 0.33±0.03 0.32±0.03

60 | | | 0.32±0.03 0.32±0.03

— 0.40±0.05 0.35±0.04 0.36±0.03 — —
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Figure 1: Comparison of convergence in terms of number of inducing points M in NLPD (mean
over 5 seeds) on UCI classification tasks: SFR (GP) ( ) vs. GP subset (GP) ( ). Our SFR (GP)
converges fast for all cases.
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(b) SFR ( ) requires fewer inducing points M to converge

to good NLPD than GP subset ( ) on UCI classification.

Dual Parameters

Dual parameters are expectations of derivatives,

αi := Ep(w | y)[∇f log p(yi | f )|f=fi
] and (7)

βi := −Ep(w | y)[∇2
ff log p(yi | fi)|f=fi

] (8)

and we simply consider the MAP of p(w | y),
Conditioning on new data Dnew with dual parameters is easy,

αu = αold
u +

∑
xi,yi∈Dnew

kzi α̂i

︸ ︷︷ ︸
update

and Bu = Bold
u +

∑
xi,yi∈Dnew

kzi β̂i kT

zi︸ ︷︷ ︸
update

Model-based Reinforcement Learning

Strategy Policy π : S → A based on posterior sampling:

πPS = arg max
π∈Π

Eε0:∞

 ∞∑
t=0

γtr(st, at)
 s.t. f̃ ∼ qu(f | D), (9)
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Figure 4: Cartpole swingup with sparse reward. Training curves showing that SFR’s uncertainty
estimates improve sample efficiency in RL. Our method ( ) converges in fewer environment steps
than the baseline model-based RL method and DDPG, the model-free baseline. The dashed lines
mark the asymptotic return for the methods not coverged in the plot.

goal is to swing the pole up and balance it around the upward position. We increase the difficulty314

of exploration by using a sparse reward function. See App. C for an overview of the reinforcement315

learning problem, details of the algorithm, and the experiment setup.316

Fig. 4 shows training curves for using SFR as the dynamic model ( ), along with a Laplace-317

GGN [27] with GLM predictions ( ), an ensemble of neural networks ( ), and a basic MLP318

without uncertainty ( ). To ensure a fair comparison, we maintain the same MLP architec-319

ture/training scheme across all these methods and incorporate them into the same model-based RL320

algorithm (see App. C). We also compare our results with Deep Deterministic Policy Gradient (DDPG,321

[41]), a model-free RL algorithm ( ). The training curves show that SFR’s uncertainty estimates322

help exploration as it converges in fewer episodes, demonstrating higher sample efficiency. As323

expected, the MLP strategy (without uncertainty) was not able to successfuly explore the environment.324

6 Discussion and conclusion325

In this paper, we have introduced SFR, a novel approach for representing neural networks in sparse326

function space, exploiting the dual parameters for an efficient low-rank approximation that accom-327

modates information from the entire data distribution. Our method offers a powerful mechanism for328

capturing predictive uncertainty, updating the model with new data without retraining, and providing329

a compact representation suitable for continual learning. These aspects were demonstrated in a330

wide range of problems, data sets, and learning contexts. We showcased our method’s ability to331

capture uncertainty in UCI classification tasks (Sec. 5.1), demonstrated robustness on image data332

sets (Sec. 5.2), established its potential for continual learning (Sec. 5.3), and finally, verified its333

applicability in reinforcement learning scenarios (Sec. 5.4).334

In practical terms, our model serves a role similar to a sparse GP. However, unlike a conventional GP, it335

does not provide a straightforward method for specifying or tuning the prior covariance function. This336

limitation can be addressed indirectly: the architecture of the neural network and the choice of activa-337

tion functions can be used to implicitly specify and tune the prior assumptions, thereby incorporating338

a broad range of inductive biases into the model. It is important to note that the Laplace-GGN ap-339

proach linearizes the network around the MAP solution w∗, resulting in the function-space prior (and340

consequently the posterior) being only a locally linear approximation of the neural network model.341

The broader impact of this work lies in its potential to provide tooling for how neural networks are uti-342

lized, offering more efficient and principled ways of handling uncertainty and continual learning. This343

contribution, we believe, has significant implications for future applications of machine learning in344

dynamic, real-world settings where data is unevenly distributed, uncertain, and continuously evolves.345

A reference implementation of the methods presented in this paper is currently available as supple-346

mentary material and will be made available under the MIT License on GitHub upon acceptance.347
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Figure 2. Cartpole swingup with sparse reward. Training curves showing that SFR’s uncertainty

estimates improve sample efficiency in RL. Our method ( ) converges in fewer environment

steps than the baseline model-based RL method and DDPG, the model-free baseline.

Practical Considerations

Calculating dual parameters is costly,
We batch over data to keep memory occupation in check.

Uncertainty is highly dependent on prior, e.g. activation fns,
Tanh works well in practice (encodes smoothness).

We tune prior precision (δ) using Bayesian optimisation,
After calculating dual parameters.

Outlook

What functionality of SFR can we leverage for model-based RL?
Can we update dynamics during an episode using dual parameters?

Use consistent function samples during planning, i.e. pathwise conditioning.
Are there clever ways to select inducing points?

We only need accurate dynamics along optimal trajectory,

Select using determinantal point process (DPP)?

Can we convert any BNN to SFR, e.g. variational inference,
We should be able to consider any distribution over weights p(w | y).

How good are the dual updates in practice?
They depend on linearisation around MAP weights,

And performing updates pushes us away from the MAP weights...

Can we speed up computation of dual parameters? E.g. KFAC.
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