Neural Networks as Sparse Gaussian Processes for Sequential Learning
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Method

. Train Neural Network

Inputs in a supervised setting for NNs fy, : RP — RC:
= D= {(x;,y:)}Y,, adataset w/ input x; € R” and output y; € R";
= w € R, the initial weights of the neural network.

(b) Train: minimize the empirical (regularized) risk:

w' = argmin £(D, w) = arg min SN fw(Xi),yi) + OR(w). (1)
Output: w*, the Maximum A-Posteriori (MAP) weights of the NN.

(2) Regression example on an MLP with two hidden layers. Left: Predictions from the trained neural network. Middle: QOur
approach summarizes all the training data with the help of a set of inducing points. The model captures the predictive mean and
uncertainty, and (right) makes it possible to incorporate new data without retraining the model.

Dual Parameters
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= Neural networks (NNs) have limitations: estimating uncertainty, ol
incorporating new data, and avoiding catastrophic forgetting. = + Ty A S ~
= Our method, Sparse Function-space Representation (SFR): § _ 3 2 ¥ G o
1. converts NN to sparse Gaussian process (GP) via dual parameters, o Z. \
7. has good uncertainty estimates il i, 2 o
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(D) SFR (—) requires fewer inducing points M to converge
to good NLPD than GP subset (—) on UCI classification.

Practical Considerations

= Dual parameters are expectations of derivatives,

= Conditioning on new data D" with dual parameters is easy,
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and we simply consider the MAP of p(w
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= Calculating dual parameters is costly,

= We batch over data to keep memory occupation in check.

= Uncertainty Is highly dependent on prior, e.g. activation fns,
= Tanh works well in practice (encodes smoothness).

= We tune prior precision (d) using Bayesian optimisation,

= After calculating dual parameters.

2. Convert Neural Network to Gaussian Process an=0"+ Y kya and By=B%+ Y k,Bk,
o | | * Xy €D Xy €D ) Outlook
(@) Linearise NN using Laplace-GGN approx at MAP weights w*, ot Lodate

Tw(x) = [V fu(x)] € R

fw(X) = Jw.(X)W where

Interpret linear model as GP,

1
p(x) =0 and - k(x,x) = = T (%) T (X),

Model-based Reinforcement Learning

= \What functionality of SFR can we leverage for model-based RL?

Strategy Policyn: S — A

hased on posterior sampling:

= We only need accurate dynamics along optimal trajectory,
= Select using determinantal point process (DPP)?

= Can we update dynamics during an episode using dual parameters?

= Use consistent function samples during planning, i.e. pathwise conditioning.
= Are there clever ways to select inducing points?

(c) Formulate GP predictive posterior via dual parameterization, - )
2 ol =kl and ) T = arg maxBe, | Y- 2r(sna)| st f~aqlf[D),  (9) = Can we convert any BNN to SFR, e.g. variational inference,
plily)Lt. ! T . N 3 e | t=0 ] = We should be able to consider any distribution over weights p(w |y).
Vary r,1y)Lfil = Fii — Ky (K + diag(8) ) ky; (3) = How good are the dual updates in practice?
00 - il ? — = They depend on linearisation around MAP weights,
3. Sparsify the Gaussian Process = And performing updates pushes us away from the MAP weights...
= Can we speed up computation of dual parameters? E.g. KFAC.
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(@) Egs. 2/3 use all data O(N”) so sparsify using inducing points, Z
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