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Observe state s

Plan  to maximise returna0, …, aH

H

∑
t=0

γtr(st, at) s.t. s0 = s

Execute each action
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Optimisation variables: a0, …, aH

Actions

J(a0:H) =
H

∑
t=0

r(st, at)

Optimisation variables:  a0, s0, …, aH, sH

Actions and states

J(a0:H, s0:H) =
H

∑
t=0

r(st, at)

s.t. ∥st+1 − f(st, at)∥ = 0

Collocation methods
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But local minima
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Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t )}H

t=0

For each iteration

Sample  action sequences  from sampling distributionN {ai
0:H}N

i=1

Evaluate objective  for each sample J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)
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top-K

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t )}H

t=0

For each iteration

Sample  action sequences  from sampling distributionN {ai
0:H}N

i=1

Evaluate objective  for each sample J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

Select top  performing samples, i.e. highest value K J(ai
0:H)

Update parameters  of action dist. using top  samples{μt, σ2
t }H

t=0 K
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Iteration 2 Initialise action sequence sampling distribution 


For each iteration


Sample  action sequences  from sampling distribution


Evaluate objective  for each sample 
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∞

∑
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∑
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Finite Horizon Planning has Limitations

27

Approximate infinite horizon return 
using learned -functionQ

Best of both worlds!
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And so on…
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πMPC(s; f, r, Qθ) = arg max
a0

max
a1,…,aH−1

=
H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH) s.t. st+1 = f(st, at)

s0 = s

Decision-time Planning
Model Predictive Control (MPC)
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Decision-time Planning
Main Takeaways 

31

Common to use CEM

• Avoids local optima

• Can handle deterministic and stochastic dynamics

• Avoids exploding/vanishing gradients

Use MPC to make CEM closed loop

Consider infinite horizon via learned  Qθ(s, a)
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Learning Objectives

Understand 


1. What a “model” is in model-based RL


2. How a “model” can aid decision making


3. Differences between background and decision-time planning


4. Decision-time planning strategies for continuous actions


5. Sources of uncertainty in model-based RL


6. Rationale and insights for decision-making under uncertainty

32
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st+1 = fenv(st, at) + ϵt where 𝔼[ϵt] = 0

Aleatoric uncertainty



fcai.fi

Decision-making Under 
Uncertainty

36



fcai.fi

Sources of Uncertainty
Decision-making Under Uncertainty

37



fcai.fi

RL objective:

Sources of Uncertainty
Decision-making Under Uncertainty

37



fcai.fi

RL objective:

J(π; f ) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37



fcai.fi

RL objective:

J(π; f ) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

Return = discounted  sum of rewards



fcai.fi

RL objective:

J(π; f ) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

Stochastic dynamics



fcai.fi

RL objective:

J(π; f ) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

Deterministic policy



fcai.fi

RL objective:

J(π; f ) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

What is the expectation over?



fcai.fi

RL objective:

J(π; f ) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37



fcai.fi

J(π; f ) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Sources of Uncertainty
Decision-making Under Uncertainty

37



fcai.fi

J(π; f ) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Expectation is over transition noise, i.e. aleatoric uncertainty

Sources of Uncertainty
Decision-making Under Uncertainty

37



fcai.fi

J(π; f ) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

Sources of Uncertainty
Decision-making Under Uncertainty

37



fcai.fi

J(π; f ) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

p( f ∣ 𝒟)

Sources of Uncertainty
Decision-making Under Uncertainty

37



fcai.fi

J(π; f ) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

p( f ∣ 𝒟)

How should we use this?

Sources of Uncertainty
Decision-making Under Uncertainty

37



fcai.fi

Model Averaging

38

πGreedy = arg max
π

𝔼p( f∣𝒟)[J(π; f )]



fcai.fi

Model Averaging

38

πGreedy = arg max
π

𝔼p( f∣𝒟)[J(π; f )]



fcai.fi

Model Averaging

38

πGreedy = arg max
π

𝔼p( f∣𝒟)[J(π; f )]

Combats model bias



fcai.fi

Model Averaging

38

πGreedy = arg max
π

𝔼p( f∣𝒟)[J(π; f )]
PILCO, PETS, etc

Combats model bias

Deisenroth et al. (2011). PILCO: A Model-Based and Data-Efficient Approach to Policy Search. ICML.

Kurtland et al. (2018). Deep Reinforcement Learning in a Handful of Trials using Probabilisitic Dynamics Models. NeurIPS.
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Figure A7: Cartpole swingup with sparse reward: Training curves show that SFR’s uncertainty esti-
mates improve sample efficiency in RL. Our method ( ) converges in fewer environment steps than
the baselines. The dashed lines mark the asymptotic return for the methods not coverged in the plot.

with the lowest validation loss was used as the NN MAP. Each experiment was ran for 5 seeds. The
Gaussian likelihood’s noise variance was set to �2

noise = 1 and trained alongside the NN’s parameters.

Data split Each data set was split 50% : 50% into an in-distribution (ID) set D1 and an out-of-
distribution (OOD) set DOOD by ordering the data along the input dimension with the most unique
values and splitting down the middle. The in-distribution (ID) data set D1 was then split 70% train
and 30% validation. The out-of-distribution (OOD) data set DOOD was then split 70% for updates D2

and 30% for calculating test metrics.

The results in Table 3 were obtained with the following procedure. We first trained the MLP on D1

and calculated SFR’s sparse dual parameters. Table 3 reports SFR’s test NLPD as well as the time to
train the NN and calculate SFR’s sparse dual parameters (Train w. D1). We then took the trained NN
and incorproated the new data D2 using dual conditioning from Eq. (17) (Updates w. D2) . Finally,
we compare incorporating new data via SFR’s dual conditioning to retraining from scratch. That is,
reinitializing the NN and training on D1 [D2 (Retrain w. D1 [D2).

D.4 REINFORCEMENT LEARNING EXPERIMENT DETAILS

This section details how we configured and ran our reinforcement learning experiments.

Environment We consider the cartpole swingup task in MuJoCo (Todorov et al., 2012). However,
we make exploration difficult by implementing a sparse reward function which returns 0 unless the
reward is over a threshold value. That is, our reward function is given by,

r̂(st,at) =

⇢
r(st,at), if r(st,at) � 0.6
0, otherwise

In all experiments we collected an initial data set using a random policy for one episode and we set
action repeat as two.

Dynamics model In all experiments we used an MLP dynamics model with a single hidden layer of
width 64 and tanh activation functions. At each episode we used Adam (Kingma & Ba, 2015) to
optimize the NN parameters for 5000 iterations with a learning rate of 0.001 and a batch size of 64.
We reset the optimizer after each episode. As we are performing regression we instantiate the loss
function in Eq. (1) as the well-known mean squared error. This corresponds to a Gaussian likelihood
with unit variance. We then set the prior precision as � = 0.0001.

Value function learning We use DDPG to learn the action value function. DDPG learns both a
policy and a value function but we do not use the policy. In our experiments, we parameterized both
the actor and critic as MLPs with two hidden layers of width 128 with ELU activations. We train
them using Adam for 500 iterations at each episode, using a learning rate 0.0003 and a batch size
of 512. DDPG uses a target value function to stabilize learning and for the soft target updates we
used ⌧ = 0.005. DDPG is an off-policy algorithm where the exploration policy samples from a noise
process, which here was a Gaussian distribution with � = 0.1 and clipping at 0.3.

28

Scannell et al. (2024). Function-space Parameterisation of Neural Networks for Sequential Learning. ICLR.
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Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ, ), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook ( ) contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].

2

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.
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TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
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quantize our latent space, which we show empirically prevents representation collapse.
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[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
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i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].
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Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ, ), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook ( ) contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].
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Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ, ), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook ( ) contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].
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Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ, ), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook ( ) contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].
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