
fcai.fi

17th July 2024

Model-based
Reinforcement
Learning
Aidan Scannell
Finnish Center for Artificial Intelligence (FCAI)
Aalto University

1

Slides available here

fcai.fi
2

AlphaGo
Model-based reasoning for games

Silver et al. (2016). Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587), 484.

fcai.fi
2

AlphaGo
Model-based reasoning for games

Silver et al. (2016). Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587), 484.

fcai.fi
3

Machine Learning for Robotics

DARPA Robotics Challenge 2015DARPA Robotics Challenge 2015 Boston Dynamics Atlas - Partners in ParkourBoston Dynamics Atlas - Partners in Parkour

https://www.youtube.com/watch?v=-MSZvKHNlgw
https://www.youtube.com/watch?v=tF4DML7FIWk

fcai.fi
3

Machine Learning for Robotics

DARPA Robotics Challenge 2015DARPA Robotics Challenge 2015 Boston Dynamics Atlas - Partners in ParkourBoston Dynamics Atlas - Partners in Parkour

https://www.youtube.com/watch?v=-MSZvKHNlgw
https://www.youtube.com/watch?v=tF4DML7FIWk

fcai.fi
3

Machine Learning for Robotics

DARPA Robotics Challenge 2015DARPA Robotics Challenge 2015 Boston Dynamics Atlas - Partners in ParkourBoston Dynamics Atlas - Partners in Parkour

https://www.youtube.com/watch?v=-MSZvKHNlgw
https://www.youtube.com/watch?v=tF4DML7FIWk

fcai.fi

Learning Objectives

4

fcai.fi

Learning Objectives

Understand

4

fcai.fi

Learning Objectives

Understand

1. What a “model” is in model-based RL

4

fcai.fi

Learning Objectives

Understand

1. What a “model” is in model-based RL

2. How a “model” can aid decision making

4

fcai.fi

Learning Objectives

Understand

1. What a “model” is in model-based RL

2. How a “model” can aid decision making

3. Differences between background and decision-time planning

4

fcai.fi

Learning Objectives

Understand

1. What a “model” is in model-based RL

2. How a “model” can aid decision making

3. Differences between background and decision-time planning

4. Decision-time planning strategies for continuous actions

4

fcai.fi

Learning Objectives

Understand

1. What a “model” is in model-based RL

2. How a “model” can aid decision making

3. Differences between background and decision-time planning

4. Decision-time planning strategies for continuous actions

5. Sources of uncertainty in model-based RL

4

fcai.fi

Learning Objectives

Understand

1. What a “model” is in model-based RL

2. How a “model” can aid decision making

3. Differences between background and decision-time planning

4. Decision-time planning strategies for continuous actions

5. Sources of uncertainty in model-based RL

6. Rationale and insights for decision-making under uncertainty

4

fcai.fi

Reinforcement Learning

5

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

State, Reward

st+1, r(st, at)

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

State, Reward

st+1, r(st, at)

States s ∈ 𝒮

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

State, Reward

st+1, r(st, at)

States s ∈ 𝒮

Actions a ∈ 𝒜

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

State, Reward

st+1, r(st, at)

States s ∈ 𝒮

Actions a ∈ 𝒜

Transition function P(st+1 ∣ st, at)

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

State, Reward

st+1, r(st, at)

States s ∈ 𝒮

Actions a ∈ 𝒜

Transition function P(st+1 ∣ st, at)

Markov Decision Process (MDP)

st+1 = f(st, at) + ϵt

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

State, Reward

st+1, r(st, at)

States s ∈ 𝒮

Actions a ∈ 𝒜

Transition function P(st+1 ∣ st, at)

Reward function rt = r(st, at)

Markov Decision Process (MDP)

st+1 = f(st, at) + ϵt

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

State, Reward

st+1, r(st, at)

States s ∈ 𝒮

Actions a ∈ 𝒜

Transition function P(st+1 ∣ st, at)

Reward function rt = r(st, at)

Start state s0

Markov Decision Process (MDP)

st+1 = f(st, at) + ϵt

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

State, Reward

st+1, r(st, at)

States s ∈ 𝒮

Actions a ∈ 𝒜

Transition function P(st+1 ∣ st, at)

Reward function rt = r(st, at)

Start state s0

Discount factor γ ∈ [0,1]

Markov Decision Process (MDP)

st+1 = f(st, at) + ϵt

fcai.fi

Reinforcement Learning

5

at = π(st)
Actions

st+1 ∼ P(⋅ ∣ st, at)
Transition function

State, Reward

st+1, r(st, at)

States s ∈ 𝒮

Actions a ∈ 𝒜

Transition function P(st+1 ∣ st, at)

Reward function rt = r(st, at)

Start state s0

Discount factor γ ∈ [0,1]

Policy π : 𝒮 → 𝒜

Markov Decision Process (MDP)

st+1 = f(st, at) + ϵt

fcai.fi

Reinforcement Learning

6

States

Actions

Transition function

Reward function

Start state

Discount factor

Policy

s ∈ 𝒮

a ∈ 𝒜

P(st+1 ∣ st, at)

rt = r(st, at)

s0

γ ∈ [0,1]

π : 𝒮 → 𝒜

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

6

States

Actions

Transition function

Reward function

Start state

Discount factor

Policy

s ∈ 𝒮

a ∈ 𝒜

P(st+1 ∣ st, at)

rt = r(st, at)

s0

γ ∈ [0,1]

π : 𝒮 → 𝒜

Goal:

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

6

States

Actions

Transition function

Reward function

Start state

Discount factor

Policy

s ∈ 𝒮

a ∈ 𝒜

P(st+1 ∣ st, at)

rt = r(st, at)

s0

γ ∈ [0,1]

π : 𝒮 → 𝒜

Goal:

max
π

𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

6

States

Actions

Transition function

Reward function

Start state

Discount factor

Policy

s ∈ 𝒮

a ∈ 𝒜

P(st+1 ∣ st, at)

rt = r(st, at)

s0

γ ∈ [0,1]

π : 𝒮 → 𝒜

Goal:

max
π

𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

6

States

Actions

Transition function

Reward function

Start state

Discount factor

Policy

s ∈ 𝒮

a ∈ 𝒜

P(st+1 ∣ st, at)

rt = r(st, at)

s0

γ ∈ [0,1]

π : 𝒮 → 𝒜

Goal:

max
π

𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]
Value function:

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

6

States

Actions

Transition function

Reward function

Start state

Discount factor

Policy

s ∈ 𝒮

a ∈ 𝒜

P(st+1 ∣ st, at)

rt = r(st, at)

s0

γ ∈ [0,1]

π : 𝒮 → 𝒜

Goal:

max
π

𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]
Value function:

Vπ(s) = 𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

6

States

Actions

Transition function

Reward function

Start state

Discount factor

Policy

s ∈ 𝒮

a ∈ 𝒜

P(st+1 ∣ st, at)

rt = r(st, at)

s0

γ ∈ [0,1]

π : 𝒮 → 𝒜

Goal:

max
π

𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]
Value function:

Vπ(s) = 𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

6

States

Actions

Transition function

Reward function

Start state

Discount factor

Policy

s ∈ 𝒮

a ∈ 𝒜

P(st+1 ∣ st, at)

rt = r(st, at)

s0

γ ∈ [0,1]

π : 𝒮 → 𝒜

Goal:

max
π

𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]
Value function:

Vπ(s) = 𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]
Action-value function (aka Q-function):

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

6

States

Actions

Transition function

Reward function

Start state

Discount factor

Policy

s ∈ 𝒮

a ∈ 𝒜

P(st+1 ∣ st, at)

rt = r(st, at)

s0

γ ∈ [0,1]

π : 𝒮 → 𝒜

Goal:

max
π

𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]
Value function:

Vπ(s) = 𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, π]
Action-value function (aka Q-function):

Qπ(s, a) = 𝔼π,P[
∞

∑
t=0

γtr(st, at) ∣ s0 = s, a0 = a, π]

Markov Decision Process (MDP)

fcai.fi

Reinforcement Learning

7

a = π(s)
Actions

s′￼ ∼ P(⋅ ∣ s, a)
Transition function

State, Reward
s′￼, r(s, a)

fcai.fi

Reinforcement Learning

7

a = π(s)
Actions

s′￼ ∼ P(⋅ ∣ s, a)
Transition function

State, Reward
s′￼, r(s, a)

Replay
buffer

𝒟 = {(s, a, s′￼, r)n}N
n=1

fcai.fi

Reinforcement Learning

7

a = π(s)
Actions

s′￼ ∼ P(⋅ ∣ s, a)
Transition function

State, Reward
s′￼, r(s, a)

Replay
buffer

𝒟 = {(s, a, s′￼, r)n}N
n=1

Update policy

fcai.fi

Reinforcement Learning

7

a = π(s)
Actions

s′￼ ∼ P(⋅ ∣ s, a)
Transition function

State, Reward
s′￼, r(s, a)

Replay
buffer

𝒟 = {(s, a, s′￼, r)n}N
n=1

Update policy

fcai.fi

Model-based Reinforcement Learning

8

a = π(s)
Actions

s′￼ ∼ P(⋅ ∣ s, a)
Transition function

State, Reward
s′￼, r(s, a)

Replay
buffer

𝒟 = {(s, a, s′￼, r)n}N
n=1

fcai.fi

Model-based Reinforcement Learning

8

a = π(s)
Actions

s′￼ ∼ P(⋅ ∣ s, a)
Transition function

State, Reward
s′￼, r(s, a)

Replay
buffer

𝒟 = {(s, a, s′￼, r)n}N
n=1

Learn model

fcai.fi

Model-based Reinforcement Learning

8

a = π(s)
Actions

s′￼ ∼ P(⋅ ∣ s, a)
Transition function

State, Reward
s′￼, r(s, a)

Replay
buffer

𝒟 = {(s, a, s′￼, r)n}N
n=1

Update policyLearn model

fcai.fi

Model-based Reinforcement Learning

8

a = π(s)
Actions

s′￼ ∼ P(⋅ ∣ s, a)
Transition function

State, Reward
s′￼, r(s, a)

Replay
buffer

𝒟 = {(s, a, s′￼, r)n}N
n=1

Update policyLearn model

fcai.fi

Model-based Reinforcement Learning

8

a = π(s)
Actions

s′￼ ∼ P(⋅ ∣ s, a)
Transition function

State, Reward
s′￼, r(s, a)

Replay
buffer

𝒟 = {(s, a, s′￼, r)n}N
n=1

Update policyLearn model

fcai.fi

Reinforcement Learning Has Its Drawbacks

9

fcai.fi

Reinforcement Learning Has Its Drawbacks

9

fcai.fi

Reinforcement Learning Has Its Drawbacks

9

fcai.fi

Reinforcement Learning Has Its Drawbacks

9

fcai.fi

Reinforcement Learning Has Its Drawbacks

9

RL has a sample efficiency problem!

fcai.fi

Model-free vs Model-based RL

10

fcai.fi

Model-free Model-based

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

Best asymptotic
performance

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

Best asymptotic
performanceSample efficient

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Computation at
deployment ✅ ❌/✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Computation at
deployment ✅ ❌/✅

Adapting to new tasks ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

Model-free Model-based

Asymptotic performance ✅ Depends

Sample efficiency ❌ ✅

Computation at
deployment ✅ ❌/✅

Adapting to new tasks ❌ ✅

Exploration ❌ ✅

Model-free vs Model-based RL

10

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

https://sites.google.com/view/mbrl-tutorial

fcai.fi

What is a “Model”?
Definition: a model is a representation that explicitly encodes knowledge about the
structure of the environment and task.

11

fcai.fi

What is a “Model”?
Definition: a model is a representation that explicitly encodes knowledge about the
structure of the environment and task.

Dynamics (transition) model

11

st+1 = f(st, at)

fcai.fi

What is a “Model”?
Definition: a model is a representation that explicitly encodes knowledge about the
structure of the environment and task.

Dynamics (transition) model

Reward model

11

st+1 = f(st, at)

rt+1 = f(st, at)

fcai.fi

What is a “Model”?
Definition: a model is a representation that explicitly encodes knowledge about the
structure of the environment and task.

Dynamics (transition) model

Reward model

Inverse dynamics model

11

st+1 = f(st, at)

rt+1 = f(st, at)

at = f −1(st, st+1)

fcai.fi

What is a “Model”?
Definition: a model is a representation that explicitly encodes knowledge about the
structure of the environment and task.

Dynamics (transition) model

Reward model

Inverse dynamics model

Model of distance

11

st+1 = f(st, at)

rt+1 = f(st, at)

at = f −1(st, st+1)

dij = fd(si, sj)

fcai.fi

What is a “Model”?
Definition: a model is a representation that explicitly encodes knowledge about the
structure of the environment and task.

Dynamics (transition) model

Reward model

Inverse dynamics model

Model of distance

Model of future returns

11

st+1 = f(st, at)

rt+1 = f(st, at)

at = f −1(st, st+1)

dij = fd(si, sj)

Gt = Q(st, at)

fcai.fi

What is a “Model”?
Definition: a model is a representation that explicitly encodes knowledge about the
structure of the environment and task.

Dynamics (transition) model

Reward model

Inverse dynamics model

Model of distance

Model of future returns

11

st+1 = f(st, at)

rt+1 = f(st, at)

at = f −1(st, st+1)

dij = fd(si, sj)

Gt = Q(st, at)

Typically this is what’s
meant in model-based RL

fcai.fi

What is a “Model”?

12

fcai.fi

What is a “Model”?

12

fcai.fi

What is a “Model”?

12

fcai.fi

What is a “Model”?

12

fcai.fi

Learning Objectives

Understand

1. What a “model” is in model-based RL

2. How a “model” can aid decision making

3. Differences between background and decision-time planning

4. Decision-time planning strategies for continuous actions

5. Sources of uncertainty in model-based RL

6. Rationale and insights for decision-making under uncertainty

13

fcai.fi

Planning

14

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

• iLQR
• CEM
• MPPI
• …

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

Discrete
actions

• iLQR
• CEM
• MPPI
• …

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

Discrete
actions

• MCTS
• …

• iLQR
• CEM
• MPPI
• …

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

Discrete
actions

Simulate
environment

• MCTS
• …

• iLQR
• CEM
• MPPI
• …

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

Discrete
actions

Simulate
environment

• MCTS
• …

• iLQR
• CEM
• MPPI
• …

• DYNA
• Latent dynamics
• …

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

Discrete
actions

Simulate
environment

Assist learning
Algorithm

• MCTS
• …

• iLQR
• CEM
• MPPI
• …

• DYNA
• Latent dynamics
• …

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

15

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

Discrete
actions

Simulate
environment

Assist learning
Algorithm

• MCTS
• …

• iLQR
• CEM
• MPPI
• …

• DYNA
• Latent dynamics
• …

• Policy backprop
• …

fcai.fi

Background vs Decision-time Planning
Background planning

16

Decision-time planning

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Decision-time planning

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Decision-time planning

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy , value , etcπθ(s) Qθ(s, a)

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy , value , etcπθ(s) Qθ(s, a)

J(θ) = 𝔼s0[
H

∑
t=0

r(st, πθ(st))]

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy , value , etcπθ(s) Qθ(s, a)

J(θ) = 𝔼s0[
H

∑
t=0

r(st, πθ(st))]

Find best action for current situation

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy , value , etcπθ(s) Qθ(s, a)

J(θ) = 𝔼s0[
H

∑
t=0

r(st, πθ(st))]

Find best action for current situation

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy , value , etcπθ(s) Qθ(s, a)

J(θ) = 𝔼s0[
H

∑
t=0

r(st, πθ(st))]

Find best action for current situation

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

Decision-time planning

s0

s0
s0

s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy , value , etcπθ(s) Qθ(s, a)

J(θ) = 𝔼s0[
H

∑
t=0

r(st, πθ(st))]

Find best action for current situation

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

a0

a1

a2

Decision-time planning

s0

s0
s0

s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy , value , etcπθ(s) Qθ(s, a)

J(θ) = 𝔼s0[
H

∑
t=0

r(st, πθ(st))]

Find best action for current situation

Optimisation variables: a0, …, aH

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

a0

a1

a2

Decision-time planning

s0

s0
s0

s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy , value , etcπθ(s) Qθ(s, a)

J(θ) = 𝔼s0[
H

∑
t=0

r(st, πθ(st))]

Find best action for current situation

Optimisation variables: a0, …, aH

Sequence of actions (and maybe also states)

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

a0

a1

a2

Decision-time planning

s0

s0
s0

s0

s0

fcai.fi

Background vs Decision-time Planning
Background planning

16

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy , value , etcπθ(s) Qθ(s, a)

J(θ) = 𝔼s0[
H

∑
t=0

r(st, πθ(st))]

Find best action for current situation

Optimisation variables: a0, …, aH

Sequence of actions (and maybe also states)

J(a0, …, aH) =
H

∑
t=0

r(st, at)

πθ(s0)

πθ(s1)
πθ(s2)

πθ(s0)

πθ(s3) πθ(s1)

πθ(s0)
πθ(s3)

πθ(s1)

πθ(s0) πθ(s1)

πθ(s2)

a0

a1

a2

Decision-time planning

s0

s0
s0

s0

s0

fcai.fi

How Do We Use The "Model”?
Background vs Decision-time Planning

17

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

Discrete
actions

Simulate
environment

Assist learning
Algorithm

• MCTS
• …

• iLQR
• CEM
• MPPI
• …

• DYNA
• Latent dynamics
• …

• Policy backprop
• …

fcai.fi

Today

How Do We Use The "Model”?
Background vs Decision-time Planning

17

Time of
Planning

Decision-time Planning
• Find best action for

current situation

Background Planning
• Learn (from past data) how

to act in any situation

Continuous
actions

Discrete
actions

Simulate
environment

Assist learning
Algorithm

• MCTS
• …

• iLQR
• CEM
• MPPI
• …

• DYNA
• Latent dynamics
• …

• Policy backprop
• …

fcai.fi

Decision-time Planning
(Continuous Actions)

18

fcai.fi

Decision-time Planning
(Continuous Actions)

18

We’ll start by assuming known, deterministic dynamics

fcai.fi

Decision-time Planning
(Continuous Actions)

18

We’ll start by assuming known, deterministic dynamics

st+1 = f(st, at)

fcai.fi

Decision-time Planning
Trajectory optimisation

19

fcai.fi

Decision-time Planning
Trajectory optimisation

19

Observe state s

fcai.fi

Decision-time Planning
Trajectory optimisation

19

Observe state s

Plan to maximise returna0, …, aH

H

∑
t=0

γtr(st, at) s.t. s0 = s

fcai.fi

Decision-time Planning
Trajectory optimisation

19

Observe state s

Plan to maximise returna0, …, aH

H

∑
t=0

γtr(st, at) s.t. s0 = s

Execute each action

fcai.fi

Trajectory Optimisation
Shooting methods

20

Collocation methods

fcai.fi

Trajectory Optimisation
Shooting methods

20

Optimisation variables: a0, …, aH

Actions

J(a0:H) =
H

∑
t=0

r(st, at)

Collocation methods

fcai.fi

Trajectory Optimisation
Shooting methods

20

Optimisation variables: a0, …, aH

Actions

J(a0:H) =
H

∑
t=0

r(st, at)

Optimisation variables: a0, s0, …, aH, sH

Actions and states

J(a0:H, s0:H) =
H

∑
t=0

r(st, at)

s.t. ∥st+1 − f(st, at)∥ = 0

Collocation methods

fcai.fi

Shooting Methods
Illustration

21

s0

fcai.fi

Shooting Methods
Illustration

21

s0

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

fcai.fi

Shooting Methods
Illustration

21

s0

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions

fcai.fi

Shooting Methods
Illustration

21

s0 a0

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a1

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a1

a2

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a0

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2 a3

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2 a3

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2 a3

a0

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2 a3

a1a0

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2 a3

a1a0

a2

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2 a3

a1a0

a2 a3

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2 a3

a1a0

a2 a3

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

Gradient based approaches are fast

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2 a3

a1a0

a2 a3

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

Gradient based approaches are fast
But local minima

fcai.fi

Shooting Methods
Illustration

21

s0 a0

a3

a1

a2

a1a0

a2 a3

a1a0

a2 a3

J(a0:H) = γ0r(s0, a0) + γ1r(f(s0, a0), a1) + … + γHr(f(f(…), aH−1), aH)

Optimising actions Recursively evaluate dynamics

Gradient based approaches are fast
But local minima
And vanishing/exploding gradients

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

fcai.fi

Shooting Methods
Random shooting

22

a*0:H

fcai.fi

Shooting Methods
Random shooting

22

a*0:H

Simple

fcai.fi

Shooting Methods
Random shooting

22

a*0:H

Simple
Parallelisable

fcai.fi

Shooting Methods
Random shooting

22

a*0:H

Simple
Parallelisable
Sample inefficient

fcai.fi

Shooting Methods
Random shooting

22

a*0:H

Simple
Parallelisable
Sample inefficient

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

fcai.fi

Shooting Methods
Cross-Entropy Method

23

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

Evaluate objective for each sample J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

fcai.fi

Shooting Methods
Cross-Entropy Method

23

top-K

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

Evaluate objective for each sample J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

Select top performing samples, i.e. highest value K J(ai
0:H)

fcai.fi

Shooting Methods
Cross-Entropy Method

23

top-K

Iteration 1 Initialise action sequence sampling distribution {at ∼ 𝒩(μt, σ2
t)}H

t=0

For each iteration

Sample action sequences from sampling distributionN {ai
0:H}N

i=1

Evaluate objective for each sample J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

Select top performing samples, i.e. highest value K J(ai
0:H)

Update parameters of action dist. using top samples{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

24

Iteration 2 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

24

Iteration 2 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

24

Iteration 2 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

24

Iteration 2 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

24

Iteration 2 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

24

Iteration 2 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

24

Iteration 2

top-K

Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

25

Iteration 3 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

25

Iteration 3 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

25

Iteration 3 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

25

Iteration 3 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

25

Iteration 3 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

25

Iteration 3 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

25

a*0:H

Iteration 3 Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

25

a*0:H

Iteration 3

More sample efficient

Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Shooting Methods
Cross-Entropy Method

25

a*0:H

Iteration 3

More sample efficient
Faster convergence

Initialise action sequence sampling distribution

For each iteration

Sample action sequences from sampling distribution

Evaluate objective for each sample

Select top performing samples, i.e. highest value

Update parameters of action dist. using top samples

{at ∼ 𝒩(μt, σ2
t)}H

t=0

N {ai
0:H}N

i=1

J(ai
0:H) =

H

∑
t=0

γtr(st, ai
t)

K J(ai
0:H)

{μt, σ2
t }H

t=0 K

fcai.fi

Collocation methods
Illustration

26

a1 a2

a3

a0

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

fcai.fi

Collocation methods
Illustration

26

a1 a2

a3

a0

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions

fcai.fi

Collocation methods
Illustration

26

a1 a2

a3

a0

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions

fcai.fi

Collocation methods
Illustration

26

a1 a2

a3

a0

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint

fcai.fi

Collocation methods
Illustration

26

a1 a2

a3

a0

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Collocation methods
Illustration

26

a1 a2

a3

a0

Dynamics constraint not satisfied!

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Collocation methods
Illustration

26

a1 a2

a3

a0

Dynamics constraint not satisfied!

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Collocation methods
Illustration

26

a1 a2

a3

a0

Dynamics constraint not satisfied!

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Collocation methods
Illustration

26

a1 a2

a3

a0a0 a1

a2
a3

Dynamics constraint not satisfied!

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Collocation methods
Illustration

26

a0 a1

a2
a3

Dynamics constraint not satisfied!

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Collocation methods
Illustration

26

a0 a1

a2
a3

Dynamics constraint not satisfied!

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Collocation methods
Illustration

26

a0 a1

a2
a3

Dynamics constraint not satisfied!

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Collocation methods
Illustration

26

a0 a1

a2
a3

a0 a1

a2
a3

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Collocation methods
Illustration

26

a0 a1

a2
a3

Dynamics constraint satisfied!

J(a0:H, s0:H) =
H

∑
t=0

γtr(st, at) s.t. ∥st+1 − f(st, at)∥ = 0

Optimising states and actions Dynamics constraint
No dynamics rollout

fcai.fi

Finite Horizon Planning has Limitations

27

fcai.fi

H−1

∑
t=0

γtr(st, at)

Finite Horizon Planning has Limitations

27

fcai.fi

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Finite Horizon Planning has Limitations

27

fcai.fi

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Finite Horizon Planning has Limitations

27

Approximate infinite horizon return
using learned -functionQ

fcai.fi

∞

∑
t=0

γtQ(st, at) ≈
H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Finite Horizon Planning has Limitations

27

Approximate infinite horizon return
using learned -functionQ

fcai.fi

Learned Q-function is common in model-free RL

∞

∑
t=0

γtQ(st, at) ≈
H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Finite Horizon Planning has Limitations

27

Approximate infinite horizon return
using learned -functionQ

fcai.fi

Learned Q-function is common in model-free RL

∞

∑
t=0

γtQ(st, at) ≈
H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Finite Horizon Planning has Limitations

27

Approximate infinite horizon return
using learned -functionQ

Best of both worlds!

fcai.fi
28

fcai.fi

Trajectory optimisation methods are open loop.

28

fcai.fi

Trajectory optimisation methods are open loop.
We can do better.

28

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

Diverged from planned trajectory…

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

Diverged from planned trajectory…

Discard a1, …, aH

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

Diverged from planned trajectory…

Discard a1, …, aH

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

Diverged from planned trajectory…

Discard

So let’s replan.

a1, …, aH

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

Diverged from planned trajectory…

Discard

So let’s replan.

a1, …, aH

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

Diverged from planned trajectory…

Discard

So let’s replan.

a1, …, aH

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi

Decision-time Planning
Model Predictive Control (MPC)

29

And so on…

For each environment step

Observe state s

Plan to maximise returna0:H

H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH)

Execute and discard a0 a1, …, aH

Any trajectory
optimisation method

fcai.fi
30

πMPC(s; f, r, Qθ) = arg max
a0

max
a1,…,aH−1

=
H−1

∑
t=0

γtr(st, at) + γHQθ(sH, aH) s.t. st+1 = f(st, at)

s0 = s

Decision-time Planning
Model Predictive Control (MPC)

fcai.fi

Decision-time Planning
Main Takeaways

31

fcai.fi

Decision-time Planning
Main Takeaways

31

Common to use CEM

fcai.fi

Decision-time Planning
Main Takeaways

31

Common to use CEM

• Avoids local optima

fcai.fi

Decision-time Planning
Main Takeaways

31

Common to use CEM

• Avoids local optima

• Can handle deterministic and stochastic dynamics

fcai.fi

Decision-time Planning
Main Takeaways

31

Common to use CEM

• Avoids local optima

• Can handle deterministic and stochastic dynamics

• Avoids exploding/vanishing gradients

fcai.fi

Decision-time Planning
Main Takeaways

31

Common to use CEM

• Avoids local optima

• Can handle deterministic and stochastic dynamics

• Avoids exploding/vanishing gradients

Use MPC to make CEM closed loop

fcai.fi

Decision-time Planning
Main Takeaways

31

Common to use CEM

• Avoids local optima

• Can handle deterministic and stochastic dynamics

• Avoids exploding/vanishing gradients

Use MPC to make CEM closed loop

Consider infinite horizon via learned Qθ(s, a)

fcai.fi

Learning Objectives

Understand

1. What a “model” is in model-based RL

2. How a “model” can aid decision making

3. Differences between background and decision-time planning

4. Decision-time planning strategies for continuous actions

5. Sources of uncertainty in model-based RL

6. Rationale and insights for decision-making under uncertainty

32

fcai.fi

Sources of Uncertainty in Model-
Based RL

33

fcai.fi

Sources of Uncertainty
Learning From Limited Data

34

st+1 = fenv(st, at)

fcai.fi

Sources of Uncertainty
Learning From Limited Data

34

st+1 = fenv(st, at)

fcai.fi

Sources of Uncertainty
Learning From Limited Data

34

st+1 = fenv(st, at)

fcai.fi

Sources of Uncertainty
Learning From Limited Data

34

st+1 = fenv(st, at)

Epistemic uncertainty

fcai.fi

Sources of Uncertainty
Learning From Limited Data

34

st+1 = fenv(st, at)

Epistemic uncertainty

fcai.fi

Sources of Uncertainty
Learning From Limited Data

34

st+1 = fenv(st, at)

Epistemic uncertainty

fcai.fi

Sources of Uncertainty
Learning From Limited Data

34

st+1 = fenv(st, at)

Epistemic uncertainty

fcai.fi

Sources of Uncertainty
Stochastic Environments

35

st+1 = fenv(st, at) + ϵt where 𝔼[ϵt] = 0

fcai.fi

Sources of Uncertainty
Stochastic Environments

35

st+1 = fenv(st, at) + ϵt where 𝔼[ϵt] = 0

fcai.fi

Sources of Uncertainty
Stochastic Environments

35

st+1 = fenv(st, at) + ϵt where 𝔼[ϵt] = 0

fcai.fi

Sources of Uncertainty
Stochastic Environments

35

st+1 = fenv(st, at) + ϵt where 𝔼[ϵt] = 0

Aleatoric uncertainty

fcai.fi

Decision-making Under
Uncertainty

36

fcai.fi

Sources of Uncertainty
Decision-making Under Uncertainty

37

fcai.fi

RL objective:

Sources of Uncertainty
Decision-making Under Uncertainty

37

fcai.fi

RL objective:

J(π; f) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

fcai.fi

RL objective:

J(π; f) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

Return = discounted sum of rewards

fcai.fi

RL objective:

J(π; f) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

Stochastic dynamics

fcai.fi

RL objective:

J(π; f) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

Deterministic policy

fcai.fi

RL objective:

J(π; f) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

What is the expectation over?

fcai.fi

RL objective:

J(π; f) = 𝔼???[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]

Sources of Uncertainty
Decision-making Under Uncertainty

37

fcai.fi

J(π; f) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Sources of Uncertainty
Decision-making Under Uncertainty

37

fcai.fi

J(π; f) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Expectation is over transition noise, i.e. aleatoric uncertainty

Sources of Uncertainty
Decision-making Under Uncertainty

37

fcai.fi

J(π; f) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

Sources of Uncertainty
Decision-making Under Uncertainty

37

fcai.fi

J(π; f) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

p(f ∣ 𝒟)

Sources of Uncertainty
Decision-making Under Uncertainty

37

fcai.fi

J(π; f) = 𝔼ϵ0:∞[
∞

∑
t=0

γtr(st, at) ∣ st+1 = f(st, at) + ϵt, at = π(st)]
RL objective:

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

p(f ∣ 𝒟)

How should we use this?

Sources of Uncertainty
Decision-making Under Uncertainty

37

fcai.fi

Model Averaging

38

πGreedy = arg max
π

𝔼p(f∣𝒟)[J(π; f)]

fcai.fi

Model Averaging

38

πGreedy = arg max
π

𝔼p(f∣𝒟)[J(π; f)]

fcai.fi

Model Averaging

38

πGreedy = arg max
π

𝔼p(f∣𝒟)[J(π; f)]

Combats model bias

fcai.fi

Model Averaging

38

πGreedy = arg max
π

𝔼p(f∣𝒟)[J(π; f)]
PILCO, PETS, etc

Combats model bias

Deisenroth et al. (2011). PILCO: A Model-Based and Data-Efficient Approach to Policy Search. ICML.

Kurtland et al. (2018). Deep Reinforcement Learning in a Handful of Trials using Probabilisitic Dynamics Models. NeurIPS.

fcai.fi

Exploration via Posterior Sampling

39

πPS = arg max
π

J(π; f̃), f̃ ∼ p(f ∣ 𝒟)

Osband et al. (2013). (More) Efficient Reinforcement Learning via Posterior Sampling. NeurIPS.

fcai.fi

Exploration via Posterior Sampling

39

πPS = arg max
π

J(π; f̃), f̃ ∼ p(f ∣ 𝒟)

Osband et al. (2013). (More) Efficient Reinforcement Learning via Posterior Sampling. NeurIPS.

fcai.fi

Exploration via Posterior Sampling

39

πPS = arg max
π

J(π; f̃), f̃ ∼ p(f ∣ 𝒟)

Osband et al. (2013). (More) Efficient Reinforcement Learning via Posterior Sampling. NeurIPS.

fcai.fi

Exploration via Posterior Sampling

39

πPS = arg max
π

J(π; f̃), f̃ ∼ p(f ∣ 𝒟)

Osband et al. (2013). (More) Efficient Reinforcement Learning via Posterior Sampling. NeurIPS.

No extra hyperparamters

fcai.fi

Exploration via Upper Confidence Bound

40

πUCB = arg max
π

max
f∈ℳ

J(π; f)

fcai.fi

Exploration via Upper Confidence Bound

40

πUCB = arg max
π

max
f∈ℳ

J(π; f) ℳ = {f ∣ ∥f(s, a) − μf(s, a)∥ ≤ βΣf(s, a)}

fcai.fi

Exploration via Upper Confidence Bound

40

πUCB = arg max
π

max
f∈ℳ

J(π; f) ℳ = {f ∣ ∥f(s, a) − μf(s, a)∥ ≤ βΣf(s, a)}

fcai.fi

Exploration via Upper Confidence Bound

40

πUCB = arg max
π

max
f∈ℳ

J(π; f) ℳ = {f ∣ ∥f(s, a) − μf(s, a)∥ ≤ βΣf(s, a)}

fcai.fi

Exploration via Upper Confidence Bound

40

πUCB = arg max
π

max
f∈ℳ

J(π; f) ℳ = {f ∣ ∥f(s, a) − μf(s, a)∥ ≤ βΣf(s, a)}

fcai.fi

Exploration via Upper Confidence Bound

40

πUCB = arg max
π

max
f∈ℳ

J(π; f) ℳ = {f ∣ ∥f(s, a) − μf(s, a)∥ ≤ βΣf(s, a)}

f(s, a) = μf(s, a) − βΣf(s, a)

fcai.fi

Exploration via Upper Confidence Bound

40

πUCB = arg max
π

max
f∈ℳ

J(π; f) ℳ = {f ∣ ∥f(s, a) − μf(s, a)∥ ≤ βΣf(s, a)}

f(s, a) = μf(s, a) − βΣf(s, a)

f(s, a) = μf(s, a) + βΣf(s, a)

fcai.fi

Exploration via Upper Confidence Bound

40

πUCB = arg max
π

max
f∈ℳ

J(π; f) ℳ = {f ∣ ∥f(s, a) − μf(s, a)∥ ≤ βΣf(s, a)}

f(s, a) = μf(s, a) − βΣf(s, a)

f(s, a) = μf(s, a) + βΣf(s, a)

Curi et al. (2020). Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning. NeurIPS.

fcai.fi

Exploration via Upper Confidence Bound

40

πUCB = arg max
π

max
f∈ℳ

J(π; f) ℳ = {f ∣ ∥f(s, a) − μf(s, a)∥ ≤ βΣf(s, a)}

f(s, a) = μf(s, a) − βΣf(s, a)

f(s, a) = μf(s, a) + βΣf(s, a)

Curi et al. (2020). Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning. NeurIPS.

Extra hyperparamter β

fcai.fi

How to Quantify Uncertainty in Dynamics?

41

Published as a conference paper at ICLR 2024

x

✓
0 10 20 30 40 50

0

100

200

300

400

Episode

Ep
is

od
e

R
et

ur
n

SFR (Ours)
LAPLACE-GLM
ENSEMBLE
MLP
DDPG

Figure A7: Cartpole swingup with sparse reward: Training curves show that SFR’s uncertainty esti-
mates improve sample efficiency in RL. Our method () converges in fewer environment steps than
the baselines. The dashed lines mark the asymptotic return for the methods not coverged in the plot.

with the lowest validation loss was used as the NN MAP. Each experiment was ran for 5 seeds. The
Gaussian likelihood’s noise variance was set to �2

noise = 1 and trained alongside the NN’s parameters.

Data split Each data set was split 50% : 50% into an in-distribution (ID) set D1 and an out-of-
distribution (OOD) set DOOD by ordering the data along the input dimension with the most unique
values and splitting down the middle. The in-distribution (ID) data set D1 was then split 70% train
and 30% validation. The out-of-distribution (OOD) data set DOOD was then split 70% for updates D2

and 30% for calculating test metrics.

The results in Table 3 were obtained with the following procedure. We first trained the MLP on D1

and calculated SFR’s sparse dual parameters. Table 3 reports SFR’s test NLPD as well as the time to
train the NN and calculate SFR’s sparse dual parameters (Train w. D1). We then took the trained NN
and incorproated the new data D2 using dual conditioning from Eq. (17) (Updates w. D2) . Finally,
we compare incorporating new data via SFR’s dual conditioning to retraining from scratch. That is,
reinitializing the NN and training on D1 [D2 (Retrain w. D1 [D2).

D.4 REINFORCEMENT LEARNING EXPERIMENT DETAILS

This section details how we configured and ran our reinforcement learning experiments.

Environment We consider the cartpole swingup task in MuJoCo (Todorov et al., 2012). However,
we make exploration difficult by implementing a sparse reward function which returns 0 unless the
reward is over a threshold value. That is, our reward function is given by,

r̂(st,at) =

⇢
r(st,at), if r(st,at) � 0.6
0, otherwise

In all experiments we collected an initial data set using a random policy for one episode and we set
action repeat as two.

Dynamics model In all experiments we used an MLP dynamics model with a single hidden layer of
width 64 and tanh activation functions. At each episode we used Adam (Kingma & Ba, 2015) to
optimize the NN parameters for 5000 iterations with a learning rate of 0.001 and a batch size of 64.
We reset the optimizer after each episode. As we are performing regression we instantiate the loss
function in Eq. (1) as the well-known mean squared error. This corresponds to a Gaussian likelihood
with unit variance. We then set the prior precision as � = 0.0001.

Value function learning We use DDPG to learn the action value function. DDPG learns both a
policy and a value function but we do not use the policy. In our experiments, we parameterized both
the actor and critic as MLPs with two hidden layers of width 128 with ELU activations. We train
them using Adam for 500 iterations at each episode, using a learning rate 0.0003 and a batch size
of 512. DDPG uses a target value function to stabilize learning and for the soft target updates we
used ⌧ = 0.005. DDPG is an off-policy algorithm where the exploration policy samples from a noise
process, which here was a Gaussian distribution with � = 0.1 and clipping at 0.3.

28

Scannell et al. (2024). Function-space Parameterisation of Neural Networks for Sequential Learning. ICLR.

fcai.fi

Learning Objectives

Understand

1. What a “model” is in model-based RL

2. How a “model” can aid decision making

3. Differences between background and decision-time planning

4. Decision-time planning strategies for continuous actions

5. Sources of uncertainty in model-based RL

6. Rationale and insights for decision-making under uncertainty

42

fcai.fi

Case Study: Dreamer (v2/v3)

43

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

World Model Learning

fcai.fi

Case Study: Dreamer (v2/v3)

43

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

World Model Learning

Latent dynamics with encoder/decoder

fcai.fi

Case Study: Dreamer (v2/v3)

43

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

Actor Critic Learning

Latent dynamics with encoder/decoder

fcai.fi

Case Study: Dreamer (v2/v3)

43

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

Actor Critic Learning

Latent dynamics with encoder/decoder

Actor & critic in latent spaceπθ(z) Qθ(z, a)

fcai.fi

Case Study: Dreamer (v2/v3)

43

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

Actor Critic Learning

Latent dynamics with encoder/decoder

Actor & critic in latent spaceπθ(z) Qθ(z, a)

Actor/critic leverage “imagined” outcomes

fcai.fi

Case Study: Dreamer (v2/v3)

43

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

Actor Critic Learning

Latent dynamics with encoder/decoder

Actor & critic in latent spaceπθ(z) Qθ(z, a)

Actor/critic leverage “imagined” outcomes

Background planning

fcai.fi

Case Study: TD-MPC2

44

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

fcai.fi

Case Study: TD-MPC2

44

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

Latent dynamics

fcai.fi

Case Study: TD-MPC2

44

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

Latent dynamics

No decoder

fcai.fi

Case Study: TD-MPC2

44

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

Latent dynamics

No decoder

Actor & critic in latent spaceπθ(z) Qθ(z, a)

fcai.fi

Case Study: TD-MPC2

44

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

Latent dynamics

No decoder

Actor & critic in latent spaceπθ(z) Qθ(z, a)

Decision-time planning

fcai.fi

Case Study: iQRL
Dynamics Model but Not Model-based RL? 🤔

45

zt ẑt+1 ẑt+2

Encoder EMA enc. EMA enc.

z̄t+1 z̄t+2at at+1

ot ot+1 ot+2

Dynamics Dynamics

FS
Q

Discrete
latent codes

Discrete
latent codes

Discrete
latent codes

ot ot+1

Encoder Encoder

zt
zt+1at rt+1

Latent transition

Actor: ⇡(zt)

Critic: Q(zt,at)

Any model-free RL algorithm

Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ,), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook () contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].

2

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

fcai.fi

Case Study: iQRL
Dynamics Model but Not Model-based RL? 🤔

45

zt ẑt+1 ẑt+2

Encoder EMA enc. EMA enc.

z̄t+1 z̄t+2at at+1

ot ot+1 ot+2

Dynamics Dynamics

FS
Q

Discrete
latent codes

Discrete
latent codes

Discrete
latent codes

ot ot+1

Encoder Encoder

zt
zt+1at rt+1

Latent transition

Actor: ⇡(zt)

Critic: Q(zt,at)

Any model-free RL algorithm

Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ,), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook () contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].

2

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Use dynamics for representation learning

fcai.fi

Case Study: iQRL
Dynamics Model but Not Model-based RL? 🤔

45

zt ẑt+1 ẑt+2

Encoder EMA enc. EMA enc.

z̄t+1 z̄t+2at at+1

ot ot+1 ot+2

Dynamics Dynamics

FS
Q

Discrete
latent codes

Discrete
latent codes

Discrete
latent codes

ot ot+1

Encoder Encoder

zt
zt+1at rt+1

Latent transition

Actor: ⇡(zt)

Critic: Q(zt,at)

Any model-free RL algorithm

Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ,), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook () contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].

2

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Observation

Use dynamics for representation learning

fcai.fi

Case Study: iQRL
Dynamics Model but Not Model-based RL? 🤔

45

zt ẑt+1 ẑt+2

Encoder EMA enc. EMA enc.

z̄t+1 z̄t+2at at+1

ot ot+1 ot+2

Dynamics Dynamics

FS
Q

Discrete
latent codes

Discrete
latent codes

Discrete
latent codes

ot ot+1

Encoder Encoder

zt
zt+1at rt+1

Latent transition

Actor: ⇡(zt)

Critic: Q(zt,at)

Any model-free RL algorithm

Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ,), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook () contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].

2

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Encoder

Use dynamics for representation learning

fcai.fi

Case Study: iQRL
Dynamics Model but Not Model-based RL? 🤔

45

zt ẑt+1 ẑt+2

Encoder EMA enc. EMA enc.

z̄t+1 z̄t+2at at+1

ot ot+1 ot+2

Dynamics Dynamics

FS
Q

Discrete
latent codes

Discrete
latent codes

Discrete
latent codes

ot ot+1

Encoder Encoder

zt
zt+1at rt+1

Latent transition

Actor: ⇡(zt)

Critic: Q(zt,at)

Any model-free RL algorithm

Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ,), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook () contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].

2

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Quantization

Use dynamics for representation learning

fcai.fi

Case Study: iQRL
Dynamics Model but Not Model-based RL? 🤔

45

zt ẑt+1 ẑt+2

Encoder EMA enc. EMA enc.

z̄t+1 z̄t+2at at+1

ot ot+1 ot+2

Dynamics Dynamics

FS
Q

Discrete
latent codes

Discrete
latent codes

Discrete
latent codes

ot ot+1

Encoder Encoder

zt
zt+1at rt+1

Latent transition

Actor: ⇡(zt)

Critic: Q(zt,at)

Any model-free RL algorithm

Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ,), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook () contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].

2

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Latent dynamics

Use dynamics for representation learning

fcai.fi

Case Study: iQRL
Dynamics Model but Not Model-based RL? 🤔

45

zt ẑt+1 ẑt+2

Encoder EMA enc. EMA enc.

z̄t+1 z̄t+2at at+1

ot ot+1 ot+2

Dynamics Dynamics

FS
Q

Discrete
latent codes

Discrete
latent codes

Discrete
latent codes

ot ot+1

Encoder Encoder

zt
zt+1at rt+1

Latent transition

Actor: ⇡(zt)

Critic: Q(zt,at)

Any model-free RL algorithm

Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ,), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook () contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].

2

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Model-free RL in latent space

Use dynamics for representation learning

fcai.fi

Outlook

46

fcai.fi

Outlook

46

Email: aidan.scannell@aalto.f

Website: www.aidanscannell.com

mailto:aidan.scannell@aalto.fi
http://www.aidanscannell.com

fcai.fi

Outlook

1. Model-based RL is a powerful tool

46

Email: aidan.scannell@aalto.f

Website: www.aidanscannell.com

mailto:aidan.scannell@aalto.fi
http://www.aidanscannell.com

fcai.fi

Outlook

1. Model-based RL is a powerful tool

2. Leveraging predictive models improves sample efficiency

46

Email: aidan.scannell@aalto.f

Website: www.aidanscannell.com

mailto:aidan.scannell@aalto.fi
http://www.aidanscannell.com

fcai.fi

Outlook

1. Model-based RL is a powerful tool

2. Leveraging predictive models improves sample efficiency

3. Lots more exciting work to be done

46

Email: aidan.scannell@aalto.f

Website: www.aidanscannell.com

mailto:aidan.scannell@aalto.fi
http://www.aidanscannell.com

