Model-based Reinforcement Learning

Aidan Scannell

Finnish Center for Artificial Intelligence (FCAI) Aalto University

Slides available here

17th July 2024

AlphaGo Model-based reasoning for games

Silver et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484.

AlphaGo Model-based reasoning for games

Silver et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484.

Domains

Knowledge

AlphaGo becomes the first program to master Go using neural networks and tree search (Jan 2016, Nature)

AlphaZero

AlphaGo Zero learns to play completely on its own, without human knowledge (Oct 2017, Nature)

AlphaZero masters three perfect information games using a single algorithm for all games (Dec 2018, Science)

MuZero learns the rules of the game, allowing it to also master environments with unknown dynamics. (Dec 2020, Nature)

Machine Learning for Robotics

DARPA Robotics Challenge 2015

Boston Dynamics Atlas - Partners in Parkour

Machine Learning for Robotics

DARPA Robotics Challenge 2015

Boston Dynamics Atlas - Partners in Parkour

Machine Learning for Robotics

DARPA Robotics Challenge 2015

Boston Dynamics Atlas - Partners in Parkour

Understand

Understand

1. What a "model" is in model-based RL

Understand

- 1. What a "model" is in model-based RL
- 2. How a "model" can aid decision making

Understand

- What a "model" is in model-based RL 1.
- 2. How a "model" can aid decision making
- 3. Differences between background and decision-time planning

Understand

- What a "model" is in model-based RL 1.
- 2. How a "model" can aid decision making
- 3. Differences between background and decision-time planning
- Decision-time planning strategies for continuous actions 4.

Understand

- What a "model" is in model-based RL 1.
- 2. How a "model" can aid decision making
- 3. Differences between background and decision-time planning
- Decision-time planning strategies for continuous actions 4.
- 5. Sources of uncertainty in model-based RL

Understand

- What a "model" is in model-based RL 1.
- 2. How a "model" can aid decision making
- 3. Differences between background and decision-time planning
- Decision-time planning strategies for continuous actions 4.
- 5. Sources of uncertainty in model-based RL
- 6. Rationale and insights for decision-making under uncertainty

FCAI

Transition function

 $s_{t+1} \sim P(\cdot \mid s_t, a_t)$

Transition function

 $S_{t+1},$

Transition function

States $s \in \mathcal{S}$

 $S_{t+1},$

Transition function

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

 $S_{t+1},$

Transition function

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

 $S_{t+1},$

Transition function

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

 $S_{t+1},$

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$ State D

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$ S_{t+1}, r

Start state *s*₀

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$ S_{t+1}, r_t

Start state S_0

Discount factor $\gamma \in [0,1]$

FCAI

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$ State D

Start state s_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state s_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

States $s \in \mathcal{S}$

Goal:

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state *s*₀

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Reinforcement Learning Markov Decision Process (MDP) Goal: States $s \in \mathcal{S}$ $\max_{\pi} \mathbb{E}_{\pi, P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$ Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state S_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Reinforcement Learning Markov Decision Process (MDP) Goal: States $s \in \mathcal{S}$ $\max_{\pi} \mathbb{E}_{\pi, P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$ Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state S_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state S_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathscr{A}$

Goal:

$$\max_{\pi} \mathbb{E}_{\pi, P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

Value function:

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state S_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Goal:

$$\max_{\pi} \mathbb{E}_{\pi, P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

Value function:

$$V_{\pi}(s) = \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$
Reinforcement Learning Markov Decision Process (MDP)

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state S_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Goal:

$$\max_{\pi} \mathbb{E}_{\pi, P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

Value function:

$$V_{\pi}(s) = \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

Reinforcement Learning Markov Decision Process (MDP)

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state S_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Goal:

$$\max_{\pi} \mathbb{E}_{\pi, P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

Value function:

$$V_{\pi}(s) = \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

Action-value function (aka Q-function):

Reinforcement Learning Markov Decision Process (MDP)

States $s \in \mathcal{S}$

Actions $a \in \mathscr{A}$

Transition function $P(s_{t+1} | s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state S_0

Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Goal:

$$\max_{\pi} \mathbb{E}_{\pi, P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

Value function:

$$V_{\pi}(s) = \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

Action-value function (aka Q-function):

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi,P} \Big[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t},a_{t}) \mid s_{0} = s, a_{0} = a, \pi$$

Reinforcement Learning

RL has a sample efficiency problem!

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

Model-free	Model-based
------------	-------------

Asymptotic performance

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

Model-free	Model-based
	Depends

Asymptotic performance

Sample efficiency

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

.

Model-free	Model-based
	Depends
×	

Asymptotic performance

Sample efficiency

Asymptotic performance

Sample efficiency

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

.

Model-free	Model-based
	Depends
×	

Asymptotic performance

Sample efficiency

Computation at deployment

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

Model-free	Model-based
	Depends
X	

Asymptotic performance

Sample efficiency

Computation at deployment

Adapting to new tasks

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

Model-free	Model-based
	Depends
X	
X	

Asymptotic performance	
Sample efficiency	
Computation at deployment	
Adapting to new tasks	
Exploration	

Tutorial on Model-Based Methods in Reinforcement Learning @ ICML 2020 by Igor Mordatch and Jessica Hamrick

Definition: a model is a representation the structure of the environment and task.

Definition: a model is a representation that explicitly encodes knowledge about the

Definition: a model is a representation that structure of the environment and task.

Dynamics (transition) model

Definition: a model is a representation that explicitly encodes knowledge about the

 $s_{t+1} = f(s_t, a_t)$

structure of the environment and task.

Dynamics (transition) model S Reward model ľ

Definition: a model is a representation that explicitly encodes knowledge about the

$$f_{t+1} = f(s_t, a_t)$$
$$f_{t+1} = f(s_t, a_t)$$

Definition: a model is a representation that structure of the environment and task.

Dynamics (transition) model	S _t
Reward model	r ₁
Inverse dynamics model	

Definition: a model is a representation that explicitly encodes knowledge about the

$$f_{t+1} = f(s_t, a_t)$$

$$f_{t+1} = f(s_t, a_t)$$

$$a_t = f^{-1}(s_t, s_{t+1})$$

structure of the environment and task.

Dynamics (transition) model	S _t
Reward model	r
Inverse dynamics model	
Model of distance	

Definition: a model is a representation that explicitly encodes knowledge about the

$$f_{t+1} = f(s_t, a_t)$$

$$f_{t+1} = f(s_t, a_t)$$

$$a_t = f^{-1}(s_t, s_{t+1})$$

$$d_{ij} = f_d(s_i, s_j)$$
structure of the environment and task.

Dynamics (transition) model	S _t
Reward model	r _t
Inverse dynamics model	
Model of distance	
Model of future returns	

Definition: a model is a representation that explicitly encodes knowledge about the

$$f_{t+1} = f(s_t, a_t)$$

$$f_{t+1} = f(s_t, a_t)$$

$$a_t = f^{-1}(s_t, s_{t+1})$$

$$d_{ij} = f_d(s_i, s_j)$$

$$G_t = Q(s_t, a_t)$$

Definition: a model is a representation that structure of the environment and task.

Dynamics (transition) model	S _t
Reward model	r
Inverse dynamics model	

Model of distance

Model of future returns

Definition: a model is a representation that explicitly encodes knowledge about the

$$f_{t+1} = f(s_t, a_t)$$

$$f_{t+1} = f(s_t, a_t)$$

$$a_t = f^{-1}(s_t, s_{t+1})$$

$$d_{ij} = f_d(s_i, s_j)$$

 $G_t = Q(s_t, a_t)$

Typically this is what's meant in model-based RL

Learning Objectives

Understand

- What a "model" is in model-based RL
- 2. How a "model" can aid decision making
- 3. Differences between background and decision-time planning
- Decision-time planning strategies for continuous actions 4.
- 5. Sources of uncertainty in model-based RL
- 6. Rationale and insights for decision-making under uncertainty

FCAI

Planning

Time of Planning

Decision-time Planning

Time of Planning

Decision-time Planning

• Find best action for current situation

Time of Planning

Decision-time Planning

• Find best action for current situation

Decision-time Planning

• Find best action for current situation

Planning

Background Planning

Learn (from past data) how to act in any situation

Time of Planning

Background Planning

Learn (from past data) how to act in any situation

Background planning Decision-time planning

Background planning

Learn how to act in any situation

Background planning

Learn how to act in any situation

Background planning

Learn how to act in any situation

Background planning

Learn how to act in any situation

Background planning

Learn how to act in any situation

Background planning

Learn how to act in any situation

Background planning

Learn how to act in any situation

Background planning

Learn how to act in any situation

Optimisation variables: θ

Background planning

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy $\pi_{\theta}(s)$, value $Q_{\theta}(s, a)$, etc

Background planning

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy $\pi_{\theta}(s)$, value $Q_{\theta}(s, a)$, etc

$$J(\theta) = \mathbb{E}_{s_0} \left[\sum_{t=0}^{H} r(s_t, \pi_{\theta}(s_t)) \right]$$

FCAI

Background planning

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy $\pi_{\theta}(s)$, value $Q_{\theta}(s, a)$, etc

$$J(\theta) = \mathbb{E}_{s_0} \left[\sum_{t=0}^{H} r(s_t, \pi_{\theta}(s_t)) \right]$$

FCAI

Decision-time planning

Find best action for current situation

Background planning

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy $\pi_{\theta}(s)$, value $Q_{\theta}(s, a)$, etc

$$J(\theta) = \mathbb{E}_{s_0} \left[\sum_{t=0}^{H} r(s_t, \pi_{\theta}(s_t)) \right]$$

FCAI

Decision-time planning

Find best action for current situation

Background planning

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy $\pi_{\theta}(s)$, value $Q_{\theta}(s, a)$, etc

$$J(\theta) = \mathbb{E}_{s_0} \left[\sum_{t=0}^{H} r(s_t, \pi_{\theta}(s_t)) \right]$$

FCAI

Decision-time planning

Find best action for current situation

Background vs Decision-time Planning Background planning Decision-time planning Learn how to act in any situation Find best action for current situation $\pi_{\theta}(s_0)$ $\pi_{0}(S_{2})$ \mathcal{U}_1 $\pi_{\theta}(s_1)$ $\pi_{\theta}(s_3)$ $\pi_{\theta}(s_1)$ a_0 $\pi_{\theta}(s_0)$ $\pi_{\theta}(s_0)$ **Optimisation variables:** θ Parameters of policy $\pi_{\theta}(s)$, value $Q_{\theta}(s, a)$, etc

$$J(\theta) = \mathbb{E}_{s_0} \left[\sum_{t=0}^{H} r(s_t, \pi_{\theta}(s_t)) \right]$$

FCAI

Background vs Decision-time Planning

Background planning

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy $\pi_{\theta}(s)$, value $Q_{\theta}(s, a)$, etc

$$J(\theta) = \mathbb{E}_{s_0} \left[\sum_{t=0}^{H} r(s_t, \pi_{\theta}(s_t)) \right]$$

FCAI

Background vs Decision-time Planning

Background planning

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy $\pi_{\theta}(s)$, value $Q_{\theta}(s, a)$, etc

$$J(\theta) = \mathbb{E}_{s_0} \left[\sum_{t=0}^{H} r(s_t, \pi_{\theta}(s_t)) \right]$$

FCAI

Optimisation variables: a_0, \ldots, a_H

Sequence of actions (and maybe also states)

Background vs Decision-time Planning

Background planning

Learn how to act in any situation

Optimisation variables: θ

Parameters of policy $\pi_{\theta}(s)$, value $Q_{\theta}(s, a)$, etc

$$J(\theta) = \mathbb{E}_{s_0} \left[\sum_{t=0}^{H} r(s_t, \pi_{\theta}(s_t)) \right]$$

FCAI

$$J(a_0, ..., a_H) = \sum_{t=0}^{H} r(s_t, a_t)$$

Decision-time Planning (Continuous Actions)

Decision-time Planning (Continuous Actions) We'll start by assuming known, deterministic dynamics

Decision-time Planning (Continuous Actions) We'll start by assuming known, deterministic dynamics

$S_{t+1} = f(S_t, a_t)$

Observe state *s*

Observe state *s*

Observe state *s*

Plan $a_0, ..., a_H$ to maximise return $\sum_{t=1}^{H} \gamma^t r(s_t, a_t)$ s.t. $s_0 = s$ t=0

Execute each action

Trajectory OptimisationShooting methodsCollocation methods

Trajectory OptimisationShooting methodsCollocation methods

- **Optimisation variables:** a_0, \ldots, a_H
 - Actions

$$J(a_{0:H}) = \sum_{t=0}^{H} r(s_t, a_t)$$

Trajectory OptimisationShooting methodsCollocation methods

- **Optimisation variables:** a_0, \ldots, a_H
 - Actions

$$J(a_{0:H}) = \sum_{t=0}^{H} r(s_t, a_t)$$

Optimisation variables: $a_0, s_0, \ldots, a_H, s_H$

Actions and states

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{H} r(s_t, a_t)$$

s.t. $||s_{t+1} - f(s_t, a_t)|| = 0$

$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(f(\dots), a_{H-1}), a_H))$

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$

a_3

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

Recursively evaluate dynamics

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

Recursively evaluate dynamics

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

Recursively evaluate dynamics

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$

Recursively evaluate dynamics

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

$f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$

Recursively evaluate dynamics

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f$$

Optimising actions

Gradient based approaches are fast

$f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$

Recursively evaluate dynamics

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$$

Optimising actions

Gradient based approaches are fast But local minima

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(\dots), a_{H-1}), a_H)$$

Optimising actions

Gradient based approaches are fast But local minima And vanishing/exploding gradients

Simple Parallelisable

Simple Parallelisable Sample inefficient

Simple Parallelisable Sample inefficient

Iteration 1

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

Iteration 1

For each iteration

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

FCAI

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

FCAI

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

FCAI

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Iteration 1

Evalu

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 2

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^{i}, H\}_{i=1}^{N}$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top *K* performing samples, i.e. highest value $J(a_{0:H}^{i})$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 2

Evalu

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^i, B_{i=1}^N\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top *K* performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 2

Evalu

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top *K* performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top *K* samples

Iteration 2

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top *K* performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top *K* samples

Iteration 2

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^i, B_{i=1}^N\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top *K* performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 2

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top *K* performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 2

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 3

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^{i}, H\}_{i=1}^{N}$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top *K* performing samples, i.e. highest value $J(a_{0:H}^{i})$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 3

Evalu

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^{i}, H\}_{i=1}^{N}$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 3

Evalu

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^{i}, H\}_{i=1}^{N}$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 3

Evalu

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^i, B_{i=1}^N\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 3

Evalu

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^{i}, H\}_{i=1}^{N}$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 3

Evalu

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^{i}, H\}_{i=1}^{N}$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 3

Evalu

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$ For each iteration

Sample N action sequences $\{a_{0}^{i}, H\}_{i=1}^{N}$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 3

For each iteration

Evalu

More sample efficient

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

Sample N action sequences $\{a_{0}^i, B_{i=1}^N\}_{i=1}^N$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Iteration 3

For each iteration

Evalu

More sample efficient **Faster convergence**

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

Sample N action sequences $\{a_{0}^{i}, H\}_{i=1}^{N}$ from sampling distribution

Late objective
$$J(a_{0:H}^{i}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t}^{i})$$
 for each sample

Select top K performing samples, i.e. highest value $J(a_{0}^{i}H)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t})$$

s.t. $||s_{t+1} - f(s_t, a_t)|| = 0$

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$$

Optimising states and actions

s.t. $||s_{t+1} - f(s_t, a_t)|| = 0$

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$$

Optimising states and actions

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$$

Optimising states and actions

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

Dynamics constraint

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$$

Optimising states and actions

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

 a_3

Dynamics constraint No dynamics rollout

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$$

Optimising states and actions

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

 a_3

Dynamics constraint No dynamics rollout

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t})$$

Optimising states and actions

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

 a_3

Dynamics constraint No dynamics rollout

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{H} \gamma^{t} r(s_{t}, a_{t})$$

Optimising states and actions

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

 a_3

Dynamics constraint No dynamics rollout

$\mathbf{r} = \sum_{t=0}^{t} \gamma^{t} r(s_{t}, a_{t})$ $J(a_{0:H}, s_{0:H})$

Optimising states and actions

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

 a_3

 a_{z}

Dynamics constraint No dynamics rollout

$\mathbf{v} = \sum_{t=0}^{t} \gamma^t r(s_t, a_t)$ $J(a_{0:H}, s_{0:H})$ **Optimising states and actions**

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

Dynamics constraint No dynamics rollout

$\mathbf{v} = \sum_{t=0}^{t} \gamma^t r(s_t, a_t)$ $J(a_{0:H}, s_{0:H})$ =

Optimising states and actions

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

Dynamics constraint No dynamics rollout

$= \sum_{t=0}^{t} \gamma^t r(s_t, a_t)$ $J(a_{0:H}, s_{0:H})$ **Optimising states and actions**

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

Dynamics constraint No dynamics rollout

$\mathbf{v} = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$ $J(a_{0:H}, s_{0:H})$ **Optimising states and actions**

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

Dynamics constraint No dynamics rollout

$$J(a_{0:H}, s_{0:H}) = \sum_{t=0}^{t} \gamma^{t} r(s_{t}, a_{t})$$

Optimising states and actions

s.t.
$$||s_{t+1} - f(s_t, a_t)|| = 0$$

Dynamics constraint No dynamics rollout

$$\sum_{t=0}^{H-1} \gamma^t r(s_t, a_t)$$

$$\sum_{t=0}^{H-1} \gamma^t r(s_t, a_t) + \gamma^H Q_{\theta}(s_H, a_t)$$

 a_H)

$$\sum_{t=0}^{H-1} \gamma^t r(s_t, a_t) + \gamma^H Q_{\theta}(s_H, a_t)$$

Approximate infinite horizon return using learned Q-function

$$\sum_{t=0}^{\infty} \gamma^t Q(s_t, a_t) \approx \sum_{t=0}^{H-1} \gamma^t r(s_t, a_t) + \gamma^H Q_{\theta}(s_H, a_t)$$

Approximate infinite horizon return using learned Q-function

$$\sum_{t=0}^{\infty} \gamma^t Q(s_t, a_t) \approx \sum_{t=0}^{H-1} \gamma^t r(s_t, a_t) + \gamma^H Q_{\theta}(s_H, a_t)$$

Learned Q-function is common in model-free RL

Approximate infinite horizon return using learned Q-function

$$\sum_{t=0}^{\infty} \gamma^t Q(s_t, a_t) \approx \sum_{t=0}^{H-1} \gamma^t r(s_t, a_t) + \gamma^H Q_{\theta}(s_H, a_t)$$

Learned Q-function is common in model-free RL

Approximate infinite horizon return using learned Q-function

-free RL Best of both worlds!

Trajectory optimisation methods are open loop. We can do better.

For each environment step

For each environment step

Observe state *s*

For each environment step

Observe state *s*

*H***-**1 Plan $a_{0:H}$ to maximise return $\sum \gamma^t r(s_t, a_t) + \gamma^H Q_{\theta}(s_H, a_H)$ t=0

Execute a_0 and discard a_1, \ldots, a_H

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

FCAI

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

FCAI

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

So let's replan.

FCAI

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

So let's replan.

FCAI

Execute a_0 and discard a_1, \ldots, a_H

Diverged from planned trajectory...

Discard a_1, \ldots, a_H

So let's replan.

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

And so on...

For each environment step

Execute a_0 and discard a_1, \ldots, a_H

 $s_0 = s$

Common to use CEM

Common to use CEM

Avoids local optima

Common to use CEM

- Avoids local optima
- Can handle deterministic and stochastic dynamics

Common to use CEM

- Avoids local optima
- Can handle deterministic and stochastic dynamics
- Avoids exploding/vanishing gradients

Common to use CEM

- Avoids local optima
- Can handle deterministic and stochastic dynamics
- Avoids exploding/vanishing gradients

Use MPC to make CEM closed loop

Common to use CEM

- Avoids local optima
- Can handle deterministic and stochastic dynamics
- Avoids exploding/vanishing gradients

Use MPC to make CEM closed loop

Consider infinite horizon via learned $Q_{\theta}(s, a)$

FCAI

Learning Objectives

Understand

- 1. What a "model" is in model-based RL
- 2. How a "model" can aid decision making
- 3. Differences between background and decision-time planning
- 4. Decision-time planning strategies for continuous actions
- 5. Sources of uncertainty in model-based RL
- 6. Rationale and insights for decision-making under uncertainty

FCAI

Sources of Uncertainty in Model-Based RL

Epistemic uncertainty

Epistemic uncertainty

Epistemic uncertainty

Epistemic uncertainty

$s_{t+1} = f_{env}(s_t, a_t) + \epsilon_t$ where $\mathbb{E}[\epsilon_t] = 0$

$s_{t+1} = f_{env}(s_t, a_t) + \epsilon_t$ where $\mathbb{E}[\epsilon_t] = 0$

$s_{t+1} = f_{env}(s_t, a_t) + \epsilon_t$ where $\mathbb{E}[\epsilon_t] = 0$

$s_{t+1} = f_{env}(s_t, a_t) + \epsilon_t$ where $\mathbb{E}[\epsilon_t] = 0$

Aleatoric uncertainty

Decision-making Under Uncertainty

$$J(\pi; f) = \mathbb{E}_{???} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{t+1} = f(s_{t}, a_{t}) + \epsilon_{t}, a_{t} = \pi(s_{t}) \right]$$

Return = discounted sum of rewards RL objective: ∞

$$J(\pi; f) = \mathbb{E}_{???} \left[\left| \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right| s_{t+1} = f(s_{t}, a_{t}) + \epsilon_{t}, a_{t} = \pi(s_{t}) \right]$$

RL objective:

$$J(\pi; f) = \mathbb{E}_{???} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} \right]$$

Stochastic dynamics $f_{t}(s_{t+1} = f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t)]$

RL objective:

$$J(\pi; f) = \mathbb{E}_{???} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} \right]$$

Deterministic policy $= f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t)$

$$J(\pi; f) = \mathbb{E}_{???} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} = f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t) \right]$$

What is the expectation over?

$$J(\pi; f) = \mathbb{E}_{???} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{t+1} = f(s_{t}, a_{t}) + \epsilon_{t}, a_{t} = \pi(s_{t}) \right]$$

$$J(\pi; f) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} = f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t) \right]$$

RL objective:

$$J(\pi; f) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} = f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t) \right]$$

Expectation is over transition noise, i.e. aleatoric uncertainty

RL objective:

$$J(\pi; f) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} = f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t) \right]$$

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

RL objective:

$$J(\pi; f) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} = f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t) \right]$$

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

$p(f \mid \mathscr{D})$

RL objective:

$$J(\pi; f) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} = f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t) \right]$$

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

 $p(f \mid \mathcal{D})$

How should we use this?

 $\pi^{Greedy} = \arg\max_{\pi} \mathbb{E}_{p(f|\mathcal{D})} \left[J(\pi; f) \right]$

$\pi^{Greedy} = \arg \max$

$$\underset{\pi}{\operatorname{ax}} \mathbb{E}_{p(f|\mathscr{D})} \Big[J(\pi; f) \Big]$$

$\pi^{Greedy} = \arg \max$

$$\underset{\pi}{\operatorname{ax}} \mathbb{E}_{p(f|\mathscr{D})} \Big[J(\pi; f) \Big]$$

Combats model bias

FCAI

$\pi^{Greedy} = \arg ma$

Deisenroth et al. (2011). PILCO: A Model-Based and Data-Efficient Approach to Policy Search. ICML. Kurtland et al. (2018). Deep Reinforcement Learning in a Handful of Trials using Probabilisitic Dynamics Models. NeurIPS. fcai.fi

$$\underset{\pi}{\operatorname{ax}} \mathbb{E}_{p(f|\mathscr{D})} \Big[J(\pi; f) \Big]$$

Osband et al. (2013). (More) Efficient Reinforcement Learning via Posterior Sampling. NeurIPS.

$\pi^{PS} = \arg \max J(\pi; \tilde{f}), \quad \tilde{f} \sim p(f \mid \mathcal{D})$

Osband et al. (2013). (More) Efficient Reinforcement Learning via Posterior Sampling. NeurIPS.

$\pi^{PS} = \arg \max J(\pi; \tilde{f}), \quad \tilde{f} \sim p(f \mid \mathscr{D})$

Osband et al. (2013). (More) Efficient Reinforcement Learning via Posterior Sampling. NeurIPS.

$\pi^{PS} = \arg \max J(\pi; \tilde{f}), \quad \tilde{f} \sim p(f \mid \mathscr{D})$

Osband et al. (2013). (More) Efficient Reinforcement Learning via Posterior Sampling. NeurIPS.

$\pi^{PS} = \arg \max J(\pi; \tilde{f}), \quad \tilde{f} \sim p(f \mid \mathscr{D})$

No extra hyperparamters

 $\pi^{UCB} = \arg \max \max_{\pi} \max_{f \in \mathcal{M}} J(\pi; f)$

 $\pi^{UCB} = \arg \max \max J(\pi; f)$ π $f \in \mathcal{M}$

 $\mathscr{M} = \left\{ f \mid \|f(s,a) - \mu_f(s,a)\| \le \beta \Sigma_f(s,a) \right\}$

 $\pi^{UCB} = \arg \max \max_{\pi} \max_{f \in \mathcal{M}} J(\pi; f)$

$\mathscr{M} = \left\{ f \mid \|f(s,a) - \mu_f(s,a)\| \le \beta \Sigma_f(s,a) \right\}$

 $\pi^{UCB} = \arg \max \max_{\pi} \max_{f \in \mathcal{M}} J(\pi; f)$

$\mathscr{M} = \left\{ f \mid \|f(s,a) - \mu_f(s,a)\| \le \beta \Sigma_f(s,a) \right\}$

 $\pi^{UCB} = \arg \max \max_{\pi} \max_{f \in \mathcal{M}} J(\pi; f)$

$\mathscr{M} = \left\{ f \mid \|f(s,a) - \mu_f(s,a)\| \le \beta \Sigma_f(s,a) \right\}$

 $\pi^{UCB} = \arg \max \max J(\pi; f)$ π $f \in \mathcal{M}$

$\mathscr{M} = \left\{ f \mid \|f(s,a) - \mu_f(s,a)\| \le \beta \Sigma_f(s,a) \right\}$

 $\pi^{UCB} = \arg \max \max J(\pi; f)$ $\pi f \in \mathcal{M}$

 $\mathscr{M} = \left\{ f \mid \|f(s,a) - \mu_f(s,a)\| \le \beta \Sigma_f(s,a) \right\}$

$\pi^{UCB} = \arg \max \max J(\pi; f)$ π $f \in \mathcal{M}$

FCA1 Curi et al. (2020). Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning. NeurIPS. fcai.fi

 $\mathscr{M} = \left\{ f \mid \|f(s,a) - \mu_f(s,a)\| \le \beta \Sigma_f(s,a) \right\}$

$\pi^{UCB} = \arg \max \max_{\pi} \max_{f \in \mathcal{M}} J(\pi; f)$

FCAT Curi et al. (2020). Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning. NeurIPS. fcai.fi

$$\mathscr{M} = \left\{ f \mid \| f(s,a) - \mu_f(s,a) \| \le \beta \Sigma_f(s,a) \right\}$$

Extra hyperparamter β

How to Quantify Uncertainty in Dynamics?

Scannell et al. (2024). Function-space Parameterisation of Neural Networks for Sequential Learning. ICLR.

FCAI
Learning Objectives

Understand

- What a "model" is in model-based RL
- 2. How a "model" can aid decision making
- 3. Differences between background and decision-time planning
- Decision-time planning strategies for continuous actions 4.
- 5. Sources of uncertainty in model-based RL
- 6. Rationale and insights for decision-making under uncertainty

FCAI

FCAI

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

World Model Learning

FCAI

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

World Model Learning

Latent dynamics with encoder/decoder

FCAI

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

Latent dynamics with encoder/decoder

FCAI

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

Latent dynamics with encoder/decoder

Actor $\pi_{\theta}(z)$ & critic $Q_{\theta}(z, a)$ in latent space

FCAI

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

Actor Critic Learning

Latent dynamics with encoder/decoder Actor $\pi_{\theta}(z)$ & critic $Q_{\theta}(z, a)$ in latent space Actor/critic leverage "imagined" outcomes

FCAI

Hafner et al. (2021). Mastering Atari with Discrete World Models. ICLR.

Actor Critic Learning

Latent dynamics with encoder/decoder Actor $\pi_{\theta}(z)$ & critic $Q_{\theta}(z, a)$ in latent space Actor/critic leverage "imagined" outcomes Background planning

FCAI

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

FCAI

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

Latent dynamics

FCAI

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

Latent dynamics

No decoder

FCAI

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

Latent dynamics

No decoder

Actor $\pi_{\theta}(z)$ & critic $Q_{\theta}(z, a)$ in latent space

FCAI

Hansen et al. (2024). TD-MPC2: Robust, Scalable World Models for Continuous Control. ICLR.

Latent dynamics

No decoder

Actor $\pi_{\theta}(z)$ & critic $Q_{\theta}(z, a)$ in latent space

Decision-time planning

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Use dynamics for representation learning

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Use dynamics for representation learning

FCAI

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Use dynamics for representation learning

FCAI

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Use dynamics for representation learning

FCAI

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Use dynamics for representation learning

FCAI

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Use dynamics for representation learning

Scannell et al. (2024). iQRL - Implicitly Quantized Representations for Sample-efficient RL. arXiv:2406.02696.

Model-free RL in latent space

fcai.fi

Email: <u>aidan.scannell@aalto.fi</u>

Website: www.aidanscannell.com

1. Model-based RL is a powerful tool

Email: <u>aidan.scannell@aalto.fi</u>

Website: www.aidanscannell.com

- Model-based RL is a powerful tool 1.
- 2. Leveraging predictive models improves sample efficiency

aidan.scannell@aalto.fi **Email:**

Website: www.aidanscannell.com

Outlook

- Model-based RL is a powerful tool 1.
- 2. Leveraging predictive models improves sample efficiency
- 3. Lots more exciting work to be done

Email: aidan.scannell@aalto.fi

Website: www.aidanscannell.com

