iQRL: Implicitly Quantized Representations for Sample-Efficient Reinforcement Learning Aidan Scannell, Kalle Kujanpää, Yi Zhao, Mohammadreza Nakhaei, Arno Solin, Joni Pajarinen

Aidan Scannell Finnish Center for Artificial Intelligence (FCAI) Aalto University

Project website

Background Representation learning for RL

Encoder	$z_t = e_\theta(o_t)$
Dynamics	$\hat{z}_{t+1} = z_t + d_\phi(z_t, a_t)$
Reward	$\hat{r}_{t+1} = r_{\phi}(z_t, a_t)$
Critic	$q_t = Q_{\psi}(z_t, a_t)$
Policy	$a_t \sim \pi_\eta(a_t \mid z_t)$

FCAI

Latent-state consistency loss (representation learning)

$$\arg\min_{\theta,\phi} \sum_{h=t}^{t+H} \gamma^h \left(\frac{z_h + d_\phi(e_\theta(o_h), a_h)}{\|z_h + d_\phi(e_\theta(o_h), a_h)\|_2} \right)^\top \left(\frac{e_{\bar{\theta}}(o_{h+1})}{\|e_{\bar{\theta}}(o_{h+1})} \right)$$

Latent-state consistency with cosine similarity

Zhao et al. (2023). Simplified Temporal Consistency Reinforcement Learning. ICML.

1. Learn representation

Background Task-agnostic representations for RL

Rempowear Evolusist speed in Fran (?TCRL)

$$\arg\min_{\theta,\phi} \sum_{h=t}^{t+H} \gamma^h \left(\frac{z_h + d_\phi(e_\theta(o_h), a_h)}{\|z_h + d_\phi(e_\theta(o_h), a_h)\|_2} \right)^\top \left(\frac{e_{\bar{\theta}}(o_{h+1})}{\|e_{\bar{\theta}}(o_{h+1})\|_2} \right) + \left\| \left\| r_\phi(e_\theta(o_h), a_h) - r_{h+1} \right\|_2^2 \right)^\top$$

But representation collapse...

$$e_{\theta}(o) = \text{const} \quad \forall o \in \mathcal{O}$$

Representation is task specific!

1. Learn representation

FCAI

iQRL Model-free RL in latent space

Observation

Encoder

Quantization

Latent transition

Model-free RL in latent space

iQRL Representation learning

Encoder
$$z_t = f(e_{\theta}(o_t))$$

Finite Scalar Quantization
Dynamics $\hat{z}_{t+1} = f(z_t + d_{\phi}(z_t, a_t))$

Latent-state consistency loss

$$\arg\min_{\theta,\phi} \sum_{h=t}^{t+H} \gamma^h \left(\frac{f(\hat{z}_h + d_\phi(\hat{z}_h, a_h))}{\|f(\hat{z}_h + d_\phi(\hat{z}_h, a_h))\|_2} \right)^{\mathsf{T}} \left(\frac{f(e_{\bar{\theta}}(\phi_{h+1}))}{\|f(e_{\bar{\theta}}(\phi_{h+1}))\|} \right)$$

Momentum encoder $\bar{\theta} \leftarrow (1 - \tau)\bar{\theta} + \tau\theta$

iQRL Algorithm

- i. For *i* in number of episodes
 - i. Collect trajectory $\tau_i = \{o_t, a_t, o_{t+1}, r_t\}_{t=0}^{I}$
 - ii. Add trajectory to replay buffer $\mathcal{D} \leftarrow \mathcal{D} \cup \tau_i$
 - iii. For $T \times r_{utd}$ steps
 - i. Sample batch from replay buffer \mathscr{D}
 - ii. One encoder update
 - iii. One critic update
 - iv. One actor update

Finite Scalar Quantization

Vector Quantization

FSQ does not learn a codebook

It's pre-specified by hyperparameters

Finite Scalar Quantization

Finite Scalar Quantization

FSQ

Results Strong Performance in DMControl

Results FSQ (Empirically) Prevents Dimensional Collapse

Results **Reward Prediction Helps a Little**

FCAI

Hyperparameter Analysis **Robust to Codebook Size**

FCAI

Hyperparameter Analysis Robust to Size of Latent State

Further Insights Reconstruction Loss Harms Performance

Further Insights Projection Head Harms Sample Efficiency

Further Insights Momentum Encoder > Stop Gradient

Further Insights Reward Head (Only) Improves a Little

Insights and Takeaways

iQRL

- Straightforward
- Compatible with any model-free RL algorithm
- Fast (no decision-time planning)
- Strong performance in DMControl
- Representation is task agnostic
- Quantization (empirically) prevents dimensional collapse \bullet

Insights

- Learning a high-dimensional latent state (d=512/1024) makes Q-learning easier...
- Difficulty of Q-learning is due to complex dynamics, not high-dimensional observations

Email: aidan.scannell@aalto.fi Website: www.aidanscannell.com

