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Background
Representation learning for RL
Encoder            


Dynamics      


Reward          


Critic                 


Policy                


Latent-state consistency loss (representation learning)


zt = eθ(ot)

̂zt+1 = zt + dϕ(zt, at)

̂rt+1 = rϕ(zt, at)

qt = Qψ(zt, at)

at ∼ πη(at ∣ zt)

arg min
θ,ϕ

t+H

∑
h=t

γh (
zh + dϕ(eθ(oh), ah)

∥zh + dϕ(eθ(oh), ah)∥2 )
⊤

(
eθ̄(oh+1)
eθ̄(oh+1) ) + rϕ(eθ(oh), ah) − rh+1

2

2

2

zt

Policy 
πη(at ∣ zt)

Value 
Qψ(zt, at)

2. Latent actor-critic

eθ

zt

at

̂zt+1

eθ̄

zt+1

ot ot+1

1. Learn representation

Zhao et al. (2023). Simplified Temporal Consistency Reinforcement Learning. ICML.

Representation is 
task specific!

Latent-state consistency with 
cosine similarity 

EMA
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Remove reward prediction? 





But representation collapse…


arg min
θ,ϕ

t+H

∑
h=t

γh (
zh + dϕ(eθ(oh), ah)

∥zh + dϕ(eθ(oh), ah)∥2 )
⊤

(
eθ̄(oh+1)

∥eθ̄(oh+1)∥2 )
eθ(o) = const ∀o ∈ 𝒪

Background
Task-agnostic representations for RL
Temporal Consistency RL (TCRL)
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Figure 1: Overview. IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [15]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ, ), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook ( ) contributes to the very high sample efficiency of IQRL and empirically
prevents representation collapse. Thanks to the FSQ-based quantization, IQRL does not need a
reward prediction head to prevent representation collapse, a well-known issue with self-supervised
learning, making the representation task-agnostic.

for RL, it is common to combine the self-supervised latent-state consistency loss with other loss
terms, such as minimizing the reward prediction error in the latent space [11, 7, 12–14]. This helps to
prevent representation collapse at the cost of learning a task-specific representation.

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. It is based solely on the latent-state consistency loss,
i.e. a commonly used self-supervised loss for continuous RL. Importantly, our method empirically
prevents representation collapse as it preserves the rank of the representation. We accomplish this
by quantizing our latent representation with Finite Scalar Quantization [16], without using any
reconstruction loss. As a result, our latent space is bounded and associated with an implicit codebook,
whose size we can control. Our method can be combined with any model-free RL method (we use
TD3, [15]). See Fig. 1 for an overview of our representation learning method. Importantly, our method
(i) alleviates representation collapse, (ii) demonstrates excellent sample efficiency outperforming
TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.

2 Related Work

In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].

2

iQRL
Model-free RL in latent space

Observation

Encoder

Quantization

Latent transition

Model-free RL 
in latent space
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TCRL and TD7 on a wide range of different continuous control tasks, (iii) is simple to implement,
and (iv) learns a task-agnostic representation that could be helpful in downstream tasks.
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In this section, we recap methods for representation learning in RL. In particular, we motivate why
researchers are moving towards learning representations using self-supervised learning. Then, as
our method builds upon self-supervised representation learning, which is susceptible to representa-
tion and dimensional collapse (see Definitions 3.1 and 3.2), we review contrastive self-supervised
representation learning approaches; an alternative approach to preventing representation collapse.

Representation learning Learning representations for RL has been investigated for decades [17–26].
However, these approaches are usually limited to simple environments. More recently, Fujimoto et al.
[6] proposed TD7, an extension of TD3 which learns state and action embeddings and then performs
TD3 with this representation, making it highly similar to our method, which also uses TD3 as the
base algorithm. However, their method uses a self-supervised loss with no explicit mechanism to
prevent representation collapse. In contrast to TD7 and motivated by representation collapse, we
quantize our latent space, which we show empirically prevents representation collapse.

Observation reconstruction A prominent idea in both model-based and model-free RL has been
to learn latent representations with reconstruction objectives (e.g. VAE, [27]) [28–30, 25, 31, 32].
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iQRL
Representation learning

Encoder 


Dynamics 


Latent-state consistency loss 


zt = f(eθ(ot))

̂zt+1 = f(zt + dϕ(zt, at))

arg min
θ,ϕ

t+H

∑
h=t

γh (
f( ̂zh + dϕ( ̂zh, ah))

∥f( ̂zh + dϕ( ̂zh, ah))∥2 )
⊤

(
f(eθ̄(oh+1))

∥f(eθ̄(oh+1))∥2 )

Momentum encoder θ̄ ← (1 − τ)θ̄ + τθ

Finite Scalar Quantization
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i. For  in number of episodes

i. Collect trajectory 


ii. Add trajectory to replay buffer 

iii. For  steps


i. Sample batch from replay buffer 

ii. One encoder update

iii. One critic update

iv. One actor update

i
τi = {ot, at, ot+1, rt}T

t=0

𝒟 ← 𝒟 ∪ τi

T × rutd
𝒟

iQRL
Algorithm
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Finite Scalar Quantization

8

FSQ does not learn a codebook 

It’s pre-specified by hyperparameters

Vector Quantization Finite Scalar Quantization
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Finite Scalar Quantization

9
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Results
Strong Performance in DMControl
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Results
FSQ (Empirically) Prevents Dimensional Collapse
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Results
Reward Prediction Helps a Little
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Hyperparameter Analysis
Robust to Codebook Size
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Hyperparameter Analysis
Robust to Size of Latent State
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Further Insights
Reconstruction Loss Harms Performance
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Further Insights
Projection Head Harms Sample Efficiency
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Further Insights
Momentum Encoder > Stop Gradient
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Further Insights
Reward Head (Only) Improves a Little
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Insights and Takeaways
iQRL


• Straightforward


• Compatible with any model-free RL algorithm


• Fast (no decision-time planning)


• Strong performance in DMControl


• Representation is task agnostic


• Quantization (empirically) prevents dimensional collapse


Insights


• Learning a high-dimensional latent state (d=512/1024) makes Q-learning easier… 


• Difficulty of Q-learning is due to complex dynamics, not high-dimensional observations

19
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