

Discrete Codebook World Models for Continuous Control

Aidan Scannell (Amos Storkey), Mohammadreza Nakhaei, Kalle Kujanpää, Yi Zhao, Kevin Luck, Arno Solin, Joni Pajarinen

University of Edinburgh Finnish Center for Artificial Intelligence (FCAI) Aalto University

Project Website

 $p(s_{t+1}, r_t \mid s_t, a_t)$

 $p(S_{t+1}, r_t \mid S_t, a_t)$

 $p(S_{t+1}, r_t \mid S_t, a_t)$

 $p(s_{t+1}, r_t \mid s_t, a_t)$

 $p(s_{t+1}, r_t \mid s_t, a_t)$

 $p(s_{t+1}, r_t \mid s_t, a_t)$

	Discrete Latent States?	Discrete Encoding Type	Stochastic Dynamics?	Reconstruction?
DreamerV3		One-hot		
TD-MPC2	×	N/A		×

Danijar Hafner, et al. Mastering diverse domains through world models. arXiv preprint arXiv:2301.04104, 2023. Nicklas Hansen, et al. TD-MPC2: Scalable, Robust World Models for Continuous Control. In The Twelfth International Conference on Learning Representations, October 2023.

1. Do discrete latent spaces offer benefits over continuous ones?

 Do discrete latent spaces offer benefits over continuous ones?
How does the choice of discrete encoding (e.g., one-hot, label, or codebook encodings) affect performance?

1. Do discrete latent spaces offer benefits over continuous ones? 2. How does the choice of discrete encoding (e.g., one-hot, label, or codebook encodings) affect performance? 3. Are there advantages to modelling the latent dynamics stochastically rather than deterministically?

	Discrete Latent States?	Discrete Encoding Type	Stochastic Dynamics?	Reconstruction?
DreamerV3		One-hot		
TD-MPC2	×	N/A		×

Danijar Hafner, et al. Mastering diverse domains through world models. arXiv preprint arXiv:2301.04104, 2023. Nicklas Hansen, et al. TD-MPC2: Scalable, Robust World Models for Continuous Control. In The Twelfth International Conference on Learning Representations, October 2023.

	Discrete Latent States?	Discrete Encoding Type	Stochastic Dynamics?	Reconstruction?
DreamerV3		One-hot		
TD-MPC2	×	N/A	×	×
DC-MPC (ours)		Codebook		X

Danijar Hafner, et al. Mastering diverse domains through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, et al. TD-MPC2: Scalable, Robust World Models for Continuous Control. In The Twelfth International Conference on Learning Representations, October 2023.

Codebook \mathscr{C} $c^{(1)}$ $c^{(2)}$ $c^{(3)}$

0

DC-MPC: Decision-time Planning

DC-MPC: Decision-time Planning

DC-MPC: Decision-time Planning

$$\mathbf{r}_{+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_h, \mathbf{a}_h) \quad \underline{\mathbf{c}}^{(i)}$$

prob. of code *i* Code

$$\mathbf{r}_{+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_h, \mathbf{a}_h) \quad \underbrace{\mathbf{c}^{(i)}}_{}$$

code prob. of code *i*

$$\mathbf{c}_{i+1} = \mathbf{c}^{(i)} | \hat{\mathbf{c}}_h, \mathbf{a}_h \rangle \quad \underline{\mathbf{c}}^{(i)}$$

ob. of code *i* code

 $p(\hat{\mathbf{c}}_2 \mid \hat{\mathbf{c}}_1, \mathbf{a}_1)$

$$\mathbf{c}^{(i)} = \mathbf{c}^{(i)} | \hat{\mathbf{c}}_h, \mathbf{a}_h \rangle \quad \underline{\mathbf{c}}^{(i)}$$

mics

$$p(\hat{\mathbf{c}}_2 \mid \hat{\mathbf{c}}_1, \mathbf{a}_1)$$

 \hat{r}_2

$$\mathbf{r}_{+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_h, \mathbf{a}_h) \quad \underline{\mathbf{c}}^{(i)}$$

code

$$\mathbf{a}_{H} + \sum_{h=0}^{H-1} \gamma^{h} R_{\xi}(\hat{\mathbf{c}}_{h}, \mathbf{a}_{h})$$

$$\mathbf{a}_{H+1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_{h}, \mathbf{a}_{h}) \underbrace{\mathbf{c}^{(i)}}_{\text{rob. of code } i} \operatorname{code}$$

$$\mathbf{a}_{H-1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_{h}, \mathbf{a}_{h}) \underbrace{\mathbf{c}^{(i)}}_{\mathbb{E}[\hat{\mathbf{c}}_{H-1}]} \operatorname{code}$$

$$\mathbf{a}_{H-1} = \mathbf{c}^{(i)} \mid \hat{\mathbf{c}}_{h-1}, \mathbf{a}_{H-1}$$

Results: Overview Strong Performance in DMControl, MetaWorld and MyoSuite Tasks

Made latent space continuous (deterministic)

Made latent space continuous (deterministic)

Discrete Codebooks Improve TD-MPC2 Combination of Discrete Codebook and Stochastic Dynamics

Website: www.aidanscannell.com

Website: www.aidanscannell.com

Website: www.aidanscannell.com

Discrete latent space better than continuous

Website: www.aidanscannell.com

- Discrete latent space better than continuous

Email: ascannel@ed.ac.uk

Website: www.aidanscannell.com

Codebook encodings > one-hot encodings > label encodings

- Discrete latent space better than continuous
- Stochastic dynamics better than deterministic

Email: ascannel@ed.ac.uk

Website: www.aidanscannell.com

Codebook encodings > one-hot encodings > label encodings