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0 Preliminaries - Reinforcement learning

Find policy 7(a;|s;) that maximises:

[o.¢]
_ t
mxBs i~ p(-|snaa~n(|s) (17 20" (sea) 1)
envir;gment paircy ~ _v
R(r)
m States: s;
m Actions: a

m Reward function: r(s;, a;) > 0
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0 Preliminaries - Model-based reinforcement learning

Find policy 7(a;|s;) that maximises:
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m States: s;
m Actions: a;

m Reward function: r(s;, a;) > 0
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Standard model-based RL algorithms Aligned Latent Models (ALM)

Aalto University 4/21
School of Engineering presented by Aidan Scannell 23" September 2022
u



0 Method overview
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m Encoder:
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encoder

2t+

F(st, e, St41) & VT(St41, Qea2, Se2) & V2 1og Q(spra, aren) = L

ey (2t | st) (3)
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0 Method overview

m Encoder:

ey (2t | st) 3)

m Latent space dynamics:

mey (zt | zt—1,a-1) (4)

policy Z£+2
a G m Laten licy:
atent space policy

Ty (at | 2t) (5)

F(st, e, St41) & VT(St41, Qea2, Se2) & V2 1og Q(spra, aren) = L
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m Optimality variable O; € {0,1}, (1 = optimal)?

%

NG

4[3] Toussaint. “Robot Trajectory Optimization Using Approxi-
mate Inference”. 2009.
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m Optimality variable O; € {0,1}, (1 = optimal)?
m Likelihood:

P(Oo:oo = 1| 7) o< R(7) (6)

@ () (@ ,
where 7 £ (s, a9, 20, 51,1, 21, - - )
ONIONIO
So @ @ S3

2

2[3] Toussaint. “Robot Trajectory Optimization Using Approxi-
mate Inference”. 2009.
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m Optimality variable O; € {0,1}, (1 = optimal)?

m Likelihood:
@ @ @ P(Op:0o = 1| 7) x R(T) (6)
where 7 £ (so0, @0, 20, 51,81, 21, )
@ e @ m Prior:
Po(7) 2 po (s0) [ [ p(sts1 | st, @) mo (ar | 21) €4 (2t | St)
So (5 (%) Ss =0 gnvironment paircy encoder

2[3] Toussaint. “Robot Trajectory Optimization Using Approxi-
mate Inference”. 2009.
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0 Distribution over trajectories

3

p(Sti1 | S, ar) 7o (ar | zt) €y (2t | st) 7)

/ J/

environment policy encoder

ps(7) = Po (S0)

t

Il
<}

m Drawing samples from py(7) requires interacting with the environment. ..
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0 Distribution over trajectories

oo
£ po(so) [T p (st | st @) my (ar | z2) €5 (2t | s1) (7)
=0 ~ ~- ~-

environment policy encoder

m Drawing samples from py(7) requires interacting with the environment. ..
= Estimate E,,)[R(7)] with trajectories sampled from another distribution g(7)
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0 Distribution over trajectories

£ po (So HP St+1 | St,at) Ty (@t | zt) €4 (2t | St) (7)

environment policy encoder

m Drawing samples from py(7) requires interacting with the environment. ..
= Estimate E,,)[R(7)] with trajectories sampled from another distribution g(7)
m Lower bound expected return using q(7)

log Ep(r)[R()] = Eq(r)[log R(7) + log p(7) — log ()] (8)
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0 Variational distribution

K
95 (1) =po (S0) €4 (20 | S0) 7s (a0 | 20) [ [ (st | St—1,@r—1) My (2t | zt-1,@1-1) 7 (at | )
\_V_/ —
encoder t=1 environment latent space dynamics policy
o0
: H p (st | St—1,ar—1) mg (z | Zt—1aat—1277¢ (at | zt)
t=K+1 envirovnmem latent space dynamics p&i:y

m Latent representations z; are independent of states s; fort > 0
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0 Variational distribution

K
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0 Variational distribution

K
95 (1) =po (S0) €4 (20 | S0) 7s (a0 | 20) [ [ (st | St—1,@r—1) My (2t | zt-1,@1-1) 7 (at | )
\_V_/ —
encoder t=1 environment latent space dynamics policy
o0
: H p(st|St—1,a-1)my (2t | zt—1,8-1) 7y (at | 2t)
t=K+1 envirovnmem latent space dynamics policy

m Latent representations z; are independent of states s; fort > 0
m So can estimate bound for any policy using samples from latent-space model
m Does not need access to high dimensional states!
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0 Objective for model-based RL

K—1
£§ £ qu(f) [(Z V7 (St,at73t+1)> + |0gQ(5K,aK)]
=0
where 7 (st ar,St01) = (1 —7) Iogr(st,at)/+log €4 (Zt41 | St41) — log My (Zi41 | z1 atz

-~

~
extrinsic term intrinsic

m Bound holds for any:
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0 Objective for model-based RL
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0 Objective for model-based RL

K—1
Ly = Eqs(r) [(Z ’Yt’N'(St,at,StH)) +7% |0gQ(SK,aK)]
t=0

where 7 (st ar, St1) = (1 — ) log r (st, aO/+I\og €4 (Zt41 | St41) — log My (Zi41 | z1 atz

~
extrinsic term intrinsic

m Bound holds for any:

® representation e,(z; | st)
m latent-space model my(zi+1 | z;, ar)
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0 Objective for model-based RL

K—1
Ly = Eqs(r) [(Z ’Yt’N'(St,at,StH)) +7% |0gQ(SK,aK)]
t=0

where 7 (st ar, St1) = (1 — ) log r (st, aO/+I\og €4 (Zt41 | St41) — log My (Zi41 | z1 atz

~
extrinsic term intrinsic

m Bound holds for any:
® representation e,(z; | st)
m latent-space model my(zi+1 | z;, ar)
m policy my(a: | zt)
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0 Practical algorithm - Aligned Latent Models

Algorithm 1 The ALM objective can be optimized with any RL algorithm. We present an implemen-
tation based on DDPG Lillicrap et al. (2015).

1: Initialize the encoder eg(z, | s¢), model my(z¢+1 | 2, ), policy my(ay | z), classifier
Co(z1+1, ar, 2¢), reward r4(2¢, a;), Q-function Qg (2, a,), replay buffer B
2: forn=1,---,N dodo

3 Select action a,, = 7g(an, | €4(s,)) + N using the current policy and exploration noise N
4: Execute action a,, and observe reward r,, and next state s, 1.

5: Store transition (s, @y, Ty, Sp+1) in B; sample length-K sequence (s;, a;, $i4+1 }:LK'I ~B
6: Compute lower bound using off-policy actions: [,ﬁi ;me (835 @i 841 R >7
7: Update encoder and model by gradient ascent on off-policy lower bound: Cﬁi My

8: Compute lower bound using on-policy actions: £,’fa ((s2)) >8
9:

Update policy by gradient ascent on on-policy lower bound: C,’fw
10: Update classifier, Q-function and reward by gradient descent on: L¢,,Lg,, Ly, > 11,9, 10

A!!
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0 Practical algorithm - Latent-space learning phase

K t+Kk—1) _ K
£e¢v’”¢ ({S”ai’ Si+1}izt ) o ]E%(Zi:t | st).My(Zist | Zri-1,8i-1) v \Qe (ZK’W(ZK)),

learned, latent

encoder latent-space dynamics
t+K—1
+ > | (@ a) KL (e (2i1 | Si1) My (2111 | 21, &)
i=t
learned,latent latent-space consistency
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0 Practical algorithm - Planning phase

K—1
m Remeber the original objective £§ = qu(T) KZ Y'F (s, ar, St 1 )) + ¥ log Q (s, aK)]
t=0
where 7 (st, ar, St1) = (1 — ) logr (st ar) + log €5 (Zt41 | St+1) — log My (241 | 21, &)
extrinsic term intrinsic
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0 Practical algorithm - Planning phase

K—1
m Remeber the original objective £§ = qu(T) KZ Y'F (s, ar, St 1 )) + ¥ log Q (s, aK)]
t=0
where 7 (st, ar, St+1) = (1 — ) logr (st, a) + log €5 (Zt+1 | St+1) — log My (2e41 | 21, &)
extrinsic term intrinsic

m Do not have access to s;1 for on-policy actions, so can't calculate e(z+1 | St+1)
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0 Practical algorithm - Planning phase

K—1
= Remeber the original objective £ £ Egx(r) KZ V'F (St, ar, St1 )) + vXlog Q (sk, aK)]
t=0

where 7 (s, ar, St+1) = (1 — ) logr(st, ar) +log €4 (Zi+1 | St+1) — log My (Ze41 | 21, ar)

extrinsic term intrinsic

m Do not have access to s;1 for on-policy actions, so can't calculate e(z+1 | St+1)

m Learn classifier Cy(zt11, at, zt) to differentiate z;1 from ey(zi+1 | St+1) and
my(Zt+1 | St, at)
tHK—1

Co (zi41, @i, Zi)

K t 6 \4i+1, diy £j K

L =F E 7 a N Q

T (St) Ge(Zekark|st) [ 2 Y <I’9( iy /) +cC Og_| Co (Zi 1,ai7zi)> + 0 (2K77 (ZK))]
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0 Experiments - Is the ALM objective useful?

Table 1: On the model-based benchmark from Wang et al. (2019), ALM outperforms model-based and model-
free methods on 4/5 tasks, often by a wide margin. We report mean and std. dev. across 5 random seeds.
T-Humanoid-v2 and T-Ant-v2 refer to the respective truncated environments.

| T-Humanoid-v2 | T-Ant-v2 | HalfCheetah-v2 | Walker2d-v2 | Hopper-v2

ALM(Q3) | 5306 +437 | 4887 +1027| 10789 +366 | 3006 +1183 | 2546 + 1074
SAC-SVG(2) -Amos et al.|[2020 501 +37 4473 + 893 8752 + 1785 448 + 1139 2852 + 361
SAC-SVG(3) 472 + 85 3833 + 1418 9220 + 1431 878 +1533 | 2024 + 1981

SLBO 4Lu0 etal. w 1377 +150 | 20040 | 1097 + 166 207 +108 | 805142

\
TD3 _ 2018 147 o7 870 +283
SAC (Haamoja et al..2018 1470 + 794 548 + 146

m Policy return after 2e5 environment steps

SVG(1) (Heess et at 2015) 811.8 x2015 | 185+141 | 3363 | 252z4 | 435:1e
|

3016 + 969 -516 + 812 1817 +994
3460 + 1326 166 + 1318 788 +977
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0 Experiments - Can ALM achieve good performance without

— ALM(B) —— MBPO —— SAC —— REDQ —— AMG)  —— MBPO  —— REDQ
1e3 Humanoid-v2 le3 Ant-v2 oo HalfCheetah-v2 13 Humanoid-v2
6 12

n
c£6 we
2, Ny | LA M ) o8 §4
el
5 0 0.4 <
g2 g,
® - 0.2 ®

° 0.0 .

0.0 25 50 00 25 Y 1 2 T 7 3

env steps 1e5 env steps 1e5 env steps 1e5 time (hours) lel

(a) Sample efficiency comparison

(b) Wall-clock comparison

Figure 3: Good performance without ensembles. Our method (ALM) can (Left) match the sample complexity
of ensembling-based methods (MBPO, REDQ) while (Right) requiring less compute. ALM performs updates

~ 10x faster than MBPO. See Appendix Fig. for results on other environments.
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0 Experiments - Why does ALM work - Anaylzing the Q values

— ALM(3) —— REDQ —— SAC-AVG
Humanoid-v2 Humanoid-v2
. 1 1.0
: "
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o 01 1 0.51 :
E o
>
© [
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Figure 5: Analyzing Q-values. See text for details.

, , Aalto University 15/21
School of Engineering presented by Aidan Scannell 23" September 2022



0 Experiments - Why does ALM work - Ablation experiments

— ALM(3) — nokL — AM(1) —— ALM(5) — ALMnomodel —— TD3
— noclassifier  —— no value — ALM(3) —— SAC —— TD3 (ours) —— sAC
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(a) Terms in the objective. (b) Sequence length. (c) Model free RL.
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0 Experiments - Why does ALM work - Analysing the learned

representations

= ALM(3) === NoKL s==:

Ground truth

lel JointOpt
s/ N /N S % TN
i1/ /N A/
2NN N
2 3
g 0 10 20
E lel JointOpt without KL
5 B
0
-3

0 10 20

trajectory steps

normalized model error

= ALM(3) = NoKL

10
trajectory steps

20

A!
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0 Summary

m One objective for learning representations, latent-space dynamics, and policy

'[2] Janner et al. “When to Trust Your Model: Model-Based Policy Optimization”. 2019.
2[1] Chen et al. “Randomized Ensembled Double Q-Learning: Learning Fast Without a Model”.
2021.
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0 Summary

m One objective for learning representations, latent-space dynamics, and policy
= Similar sample efficieny to MBPO'! and REDQ?

'[2] Janner et al. “When to Trust Your Model: Model-Based Policy Optimization”. 2019.
2[1] Chen et al. “Randomized Ensembled Double Q-Learning: Learning Fast Without a Model”.
2021.
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0 Summary

m One objective for learning representations, latent-space dynamics, and policy
= Similar sample efficieny to MBPO'! and REDQ?
= No ensembles leads to ~6x less wall-clock time

'[2] Janner et al. “When to Trust Your Model: Model-Based Policy Optimization”. 2019.
2[1] Chen et al. “Randomized Ensembled Double Q-Learning: Learning Fast Without a Model”.
2021.
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0 Difference between theory and experiments

m They omit log r(s;, a;) from Equations 7 and 8
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0 Difference between theory and experiments

m They omit log r(s;, a;) from Equations 7 and 8
m because it decreased performance

m They scale the KL term in policy objective (Equation 7)
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0 Limitations

m More moving parts than model-free algorithms

My thoughts
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0 Limitations

m More moving parts than model-free algorithms
m Target network for ey4
m Target network for Qg
m Classifer Cy for estimating log e, (241 | St+1) — log mg(zi11 | St, ar)

m Gap between theoretical analysis and practical implementation (function

approximation etc)
My thoughts

m Fig 4 - Still good performance when removing the latent-space dynamics????
= I'm a little confused about this as learning Cy in Eq 7 requires access to my?

m This method encodes exploration via expectation over latent trajectories {z;}?
m But the distribution over z; does not represent epistemic uncertainty. ..
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