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0 Preliminaries - Reinforcement learning

Find policy π(at |st) that maximises:

max
π

Est+1 ∼ p (· | st , at)︸ ︷︷ ︸
environment

,at ∼ π (· | st)︸ ︷︷ ︸
policy

(1 − γ)
∞∑

t=0

γt r (st , at)︸ ︷︷ ︸
R(τ)

 (1)

States: st

Actions: at

Reward function: r(st , at) ≥ 0
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0 Preliminaries - Model-based reinforcement learning

Find policy π(at |st) that maximises:

max
π

Est+1 ∼ pθ (· | st , at)︸ ︷︷ ︸
dynamics

,at ∼ π (· | st)︸ ︷︷ ︸
policy

(1 − γ)
∞∑

t=0

γt r (st , at)︸ ︷︷ ︸
R(τ)

 (2)

States: st

Actions: at

Reward function: r(st , at) ≥ 0
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0 Method overview

Encoder:

eϕ (zt | st) (3)

Latent space dynamics:

mϕ (zt | zt−1, at−1) (4)

Latent space policy:

πϕ (at | zt) (5)
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s0 s1 s2 s3

a0 a1 a2

O0 O1 O2

Optimality variable Ot ∈ {0, 1}, (1 = optimal)a

Likelihood:

p(O0:∞ = 1 | τ) ∝ R(τ) (6)

where τ ≜ (s0, a0, z0, s1, a1, z1, · · · )
Prior:

pϕ(τ) ≜ p0 (s0)
∞∏

t=0

p (st+1 | st , at)︸ ︷︷ ︸
environment

πϕ (at | zt)︸ ︷︷ ︸
policy

eϕ (zt | st)︸ ︷︷ ︸
encoder

a[3] Toussaint. “Robot Trajectory Optimization Using Approxi-
mate Inference”. 2009.
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0 Distribution over trajectories

pϕ(τ) ≜ p0 (s0)
∞∏

t=0

p (st+1 | st , at)︸ ︷︷ ︸
environment

πϕ (at | zt)︸ ︷︷ ︸
policy

eϕ (zt | st)︸ ︷︷ ︸
encoder

(7)

Drawing samples from pϕ(τ) requires interacting with the environment. . .

Estimate Ep(τ)[R(τ)] with trajectories sampled from another distribution q(τ)
Lower bound expected return using q(τ)

logEp(τ)[R(τ)] ≥ Eq(τ)[logR(τ) + log p(τ)− log q(τ)] (8)
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0 Variational distribution

qK
ϕ (τ) =p0 (s0) eϕ (z0 | s0)︸ ︷︷ ︸

encoder

πϕ (a0 | z0)
K∏

t=1

p (st | st−1, at−1)︸ ︷︷ ︸
environment

mϕ (zt | zt−1, at−1)︸ ︷︷ ︸
latent space dynamics

πϕ (at | zt)︸ ︷︷ ︸
policy

·
∞∏

t=K+1

p (st | st−1, at−1)︸ ︷︷ ︸
environment

mϕ (zt | zt−1, at−1)︸ ︷︷ ︸
latent space dynamics

πϕ (at | zt)︸ ︷︷ ︸
policy

Latent representations zt are independent of states st for t > 0

So can estimate bound for any policy using samples from latent-space model

Does not need access to high dimensional states!
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0 Objective for model-based RL

LK
ϕ ≜ EqK

ϕ (τ)

[(
K−1∑
t=0

γt r̃ (st , at , st+1)

)
+ γK logQ (sK , aK )

]
where r̃ (st , at , st+1) = (1 − γ) log r (st , at)︸ ︷︷ ︸

extrinsic term

+ log eϕ (zt+1 | st+1)− logmϕ (zt+1 | zt , at)︸ ︷︷ ︸
intrinsic

Bound holds for any:

representation eϕ(zt | st)
latent-space model mϕ(zt+1 | zt , at)
policy πϕ(at | zt)
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0 Practical algorithm - Aligned Latent Models
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0 Practical algorithm - Latent-space learning phase

LK
eϕ,mϕ

(
{si , ai , si+1}t+K−1

i=t

)
= Eeϕ(zi=t | st)︸ ︷︷ ︸

encoder

,mϕ(zi>t | zt:i−1, ai−1)︸ ︷︷ ︸
latent-space dynamics

[
γK Qθ (zK , π (zK ))︸ ︷︷ ︸

learned,latent

+
t+K−1∑

i=t

γ i

 rθ (zi , ai)︸ ︷︷ ︸
learned,latent

−KL
(
eϕtarg (zi+1 | si+1) ∥mϕ (zi+1 | zi , ai)

)︸ ︷︷ ︸
latent-space consistency

]
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0 Practical algorithm - Planning phase

Remeber the original objective LK
ϕ ≜ EqK

ϕ(τ)

[(
K−1∑
t=0

γ t r̃ (st , at , st+1)

)
+ γK logQ (sK , aK )

]
where r̃ (st , at , st+1) = (1 − γ) log r (st , at)︸ ︷︷ ︸

extrinsic term

+ log eϕ (zt+1 | st+1)− logmϕ (zt+1 | zt , at)︸ ︷︷ ︸
intrinsic

Do not have access to st+1 for on-policy actions, so can’t calculate eϕ(zt+1 | st+1)

Learn classifier Cθ(zt+1, at , zt) to differentiate zt+1 from eϕ(zt+1 | st+1) and
mϕ(zt+1 | st , at)

LK
πϕ

(st) = Eqϕ(zt:K ,at:K |st )

[
t+K−1∑

i=t

γ t
(

rθ (zi , ai) + c · log Cθ (zi+1, ai , zi)

1 − Cθ (zi+1, ai , zi)

)
+ γK Qθ (zK , π (zK ))

]
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0 Experiments - Is the ALM objective useful?

Policy return after 2e5 environment steps
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0 Experiments - Can ALM achieve good performance without
ensembles
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0 Experiments - Why does ALM work - Anaylzing the Q values
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0 Experiments - Why does ALM work - Ablation experiments
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0 Experiments - Why does ALM work - Analysing the learned
representations
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0 Summary

One objective for learning representations, latent-space dynamics, and policy

Similar sample efficieny to MBPO1 and REDQ2

No ensembles leads to ~6x less wall-clock time

1[2] Janner et al. “When to Trust Your Model: Model-Based Policy Optimization”. 2019.
2[1] Chen et al. “Randomized Ensembled Double Q-Learning: Learning Fast Without a Model”.
2021.
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0 Difference between theory and experiments

They omit log r(st , at) from Equations 7 and 8

because it decreased performance

They scale the KL term in policy objective (Equation 7)
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0 Limitations

More moving parts than model-free algorithms

Target network for eϕ

Target network for Qθ

Classifer Cθ for estimating log eϕ(zt+1 | st+1)− logmϕ(zt+1 | st , at)

Gap between theoretical analysis and practical implementation (function
approximation etc)

My thoughts

Fig 4 - Still good performance when removing the latent-space dynamics????

I’m a little confused about this as learning Cθ in Eq 7 requires access to mθ?

This method encodes exploration via expectation over latent trajectories {zt}?

But the distribution over zt does not represent epistemic uncertainty. . .
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