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Abstract—This paper presents a two-stage method to perform
trajectory optimisation in multimodal dynamical systems with
unknown nonlinear stochastic transition dynamics. The method
finds trajectories that remain in a preferred dynamics mode
where possible and in regions of the transition dynamics model
that have been observed and can be predicted confidently. The
first stage leverages a Mixture of Gaussian Process Experts
method to learn a predictive dynamics model from historical
data. Importantly, this model learns a gating function that
indicates the probability of being in a particular dynamics
mode at a given state location. This gating function acts as
a coordinate map for a latent Riemannian manifold on which
shortest trajectories are solutions to our trajectory optimisation
problem. Based on this intuition, the second stage formulates
a geometric cost function, which it then implicitly minimises
by projecting the trajectory optimisation onto the second-order
geodesic ODE; a classic result of Riemannian geometry. A set
of collocation constraints are derived that ensure trajectories
are solutions to this ODE, implicitly solving the trajectory
optimisation problem.

I. INTRODUCTION

Many physical systems operate under switching dynamics
modes due to changing environmental or internal conditions.
Examples include: robotic grasping where objects with dif-
ferent properties have to be manipulated, robotic locomotion
in environments with varying surface types and the control
of aircraft in environments subject to different levels of tur-
bulence. When controlling these systems, it may be preferred
to find trajectories that remain in a single dynamics mode.
This paper is interested in controlling a DJI Tello quadcopter
in an environment with spatially varying turbulence induced
by a fan at the side of the room, shown in Fig. 1. It is
hard to know the exact transition dynamics due to complex
and uncertain interactions between the quadcopter and the
fan. The system’s transition dynamics resemble a mixture of
two modes: a turbulent mode in front of the fan and a non-
turbulent mode everywhere else. When planning a trajectory
from start state x0 to desired state xf it is preferred to avoid
entering the turbulent mode, as it results in poor performance
and sometimes even system failure.

Trajectory optimisation comprises a powerful set of tech-
niques for finding open-loop controls of dynamical systems
such that an objective function is minimised whilst satisfying
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Fig. 1 – This work seeks to velocity control a DJI Tello quadcopter
in an indoor environment subject to two modes of operation char-
acterised by process noise (turbulence). A high turbulence mode is
induced by placing a desktop fan at the right side of the room. Data
from four trajectories following a 2D x = (x, y) target trajectory
captures the variability (process noise) in the dynamics. Our transi-
tion dynamics model learns each mode’s mixing probability over the
domain; the contours show how the probability of dynamics mode
1 (α = 1) varies. Our method finds trajectories between x0 and xf
that either prioritise remaining in the non-turbulent mode (green)
or prioritise avoiding regions of the learned dynamics with high
epistemic uncertainty due to lack of training observations (magenta).

a set of constraints. It is commonly used for controlling
aircraft, robotic manipulators, and walking robots [1, 7,
25]. One caveat to trajectory optimisation is that it requires
a relatively accurate mathematical model of the system.
Traditionally, these mathematical models are built using first
principles based on physics. However, accurately modelling
the underlying transition dynamics can be challenging and
lead to the introduction of model errors. For example, both
observation and process noise are inherent in many real-
world systems and can be hard to model due to both
spatial and temporal variations. Incorrectly accounting for
this uncertainty can have a detrimental impact on controller
performance and is an active area of research in the robust
and stochastic optimal control communities [6, 21].

The difficulties associated with constructing mathematical
models can be overcome by learning from observations [13].
However, learning dynamics models for control introduces
other difficulties. For example, it is important to know where



the model cannot predict confidently due to a lack of training
observations. This concept is known as epistemic uncertainty
and is reduced in the limit of infinite data. Probabilistic mod-
els have been used to account for epistemic uncertainty and
also provide a principled approach to modelling stochasticity
i.e. aleatoric uncertainty [4, 20]. For example, [3, 4, 17]
use Gaussian processes (GPs) to learn transition dynamics.
GPs lend themselves to data-efficient learning through the
selection of informative priors, and when used in a Bayesian
setting offer well calibrated uncertainty estimates. Methods
for learning probabilistic multimodal transition dynamics
have also been proposed: [14] use a Mixture of Gaussian
Process Experts (MoGPE) method, [16] use deep generative
models and [10] use a Bayesian model that learns inde-
pendent dynamics modes whilst maintaining a probabilistic
belief over which mode is responsible for predicting at a
given input location.

There has also been work developing control algorithms
exploiting learned multimodal transition dynamics [9]. How-
ever, our work differs as it seeks to find trajectories that
remain in a single dynamics mode whilst avoiding regions of
the transition dynamics that cannot be predicted confidently.
To the best of our knowledge, there is no previous work
addressing such trajectory optimisation in dynamical systems.

Motivated by trajectory optimisation, we adopt (and ex-
tend) the well-known MoGPE method with a GP-based gat-
ing network [24] to learn a time-invariant transition dynamics
model. Our trajectory optimisation formulates a cost function
that exploits the geometric structure learned by the GP-based
gating network along with its well calibrated uncertainty
estimates. We observe that trajectories minimising our cost
function are geodesics on a Riemannian manifold parame-
terised by the desired mode’s gating function. With this ob-
servation, we exploit a classic result of Riemannian geometry
and project the trajectory optimisation onto a continuous-time
ODE, whose solutions implicitly minimise our cost function.
Solutions to this ODE are trajectories that remain in a single
dynamics mode (where possible) and avoid regions of the
dynamics that cannot be predicted confidently. We then solve
this latent ODE using Hermite-Simpson collocation [11].

The remainder of this paper details our two-stage approach
to learning the transition dynamics and performing trajectory
optimisation. Section II formally states our problem and
Section III details the formulation of the transition dynamics
as a probabilistic model. Section III-E details our approach
to performing scalable Bayesian inference. Section IV recaps
concepts from Riemannian geometry before introducing our
geometric cost function. It then details how we implicitly
minimise it by projecting the trajectory optimisation onto a
latent ODE. Section V gives results of the method tested on
a real-world velocity-controlled quadcopter example.

II. PROBLEM STATEMENT

This work is interested in performing trajectory optimisa-
tion in multimodal nonlinear systems with unknown tran-

sition dynamics. It considers continuous-time, continuous-
state, nonlinear stochastic dynamics,

ẋ(t) = f(x(t),u(t)) + ε(t) (1)

= f (k)(x(t),u(t)) + ε(k)(t) if α(t) = k

with states x ∈ X and controls u ∈ U where X = RD

and U = RF . One of K dynamics modes {f (k)}Kk=1 and
associated noise models ε(k)(t) ∼ N (0, (σ(k))2) are selected
by a switching (or gating) variable α(t) ∈ {1, . . . ,K}.

Trajectory optimisation seeks to find the state and control
trajectories x̄, ū, for times t ∈ [t0, tf ] that minimise some
cost function g whilst satisfying constraints c and boundary
conditions. The trajectory optimisation problem is given by,

min
x(t),u(t)

∫ tf

t0

g(x(t),u(t))dt ∀t

s.t. Eq. 1
c(x(t)) ≤ 0 ∀t
x(t0) = x0, x(tf ) = xf (2)

This work is interested in finding trajectories that,
1) attempt to remain in a preferred dynamics mode k∗,
2) avoid regions of the learned dynamics with high epis-

temic uncertainty, i.e. that cannot be predicted confi-
dently (due to limited training observations).

The standard approach is to construct a cost function that
encodes our two goals. It could take the form,

J =

∫ tf

t0

gmode(x(t),u(t)) + gepistemic(x(t),u(t))dt (3)

where gmode favours remaining in dynamics mode k∗ and
gepistemic favours trajectories avoiding regions of the dynamics
with high epistemic uncertainty. We follow this approach and
construct a cost function based on probabilistic Riemannian
geometry. We then exploit a classic result of Riemannian
geometry and project the trajectory optimisation onto an ODE
whose solutions implicitly minimise it.

III. STAGE ONE - MODEL LEARNING

The first stage of our method learns a probabilistic rep-
resentation of the transition dynamics using the well known
MoGPE model. It is capable of modelling both the aleatoric
uncertainty inherent in the system as well as the epistemic
uncertainty associated with learning from observations. We
assume access to historical data comprising state transitions
from E trajectories of length N sampled with a fixed time
step ∆t = t∗. The data set has T = EN elements, and we
abuse notation and append the independent trajectories along
time to get the data set D = {(xt−1,ut−1),∆xt}Tt=1.

In this section we first introduce GPs and the sparse GP
approximation that is used throughout. We then formulate Eq.
1 as a discrete-time probabilistic transition dynamics model
and derive a novel variational lower bound based on sparse
GPs which enables scalable Bayesian inference.
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Fig. 2 – Graphical model of the transition dynamics where the state
difference ∆xt is generated by pushing the state and control x̂t−1

through the latent process.

A. Sparse Gaussian Processes

A GP [18] is a distribution over functions f : RDf →
R fully defined by a mean function µ(·) and a covariance
function k(·, ·). For a given set of inputs from the function’s
domain X = {x1, . . . ,xN} the associated function values
f = {f(x1), . . . , f(xN )} are jointly Gaussian,

p(f | X) = N (f | µx,Kxx), (4)

where µx = µ(X) is the mean vector, and Kxx = k(X,X)
is the covariance function evaluated between the inputs X. In
this work, the squared exponential covariance function with
Automatic Relevance Determination is used for all GPs. The
distribution over the function value f∗ at a new input x∗ (i.e.
to make a prediction) is given by the conditional,

p(f∗ | x∗, f ,X) = N (µ∗ + k∗xK
−1
xx (f − µx), k∗∗ − k∗xK

−1
xxkx∗).

This GP conditional is computationally expensive due to
conditioning on all of the training data X, f . Introducing
a set of M inducing points from the same GP prior can
reduce the computational cost if M < N . The inducing
inputs are denoted ξ and outputs as f̂ = f(ξ). The inducing
outputs f̂ are jointly Gaussian with the latent function values
f so the GP predictive distribution can be approximated by
conditioning on this smaller set of inducing points,

p(f∗ | x∗, f ,X) ≈ p(f∗ | x∗, f̂ , ξ) (5)

= N
(
µ∗ + k∗ξK

−1
ξξ (f̂ − µξ), k∗∗ − k∗ξK

−1
ξξ kξ∗

)
.

The approximation becomes exact when the inducing points
f̂ are a sufficient statistic for the latent function values f [22].

B. Model Definition

This work learns a discrete-time representation of Eq. 1,

∆xt = f (k)(xt−1,ut−1; ∆t = t∗) + ε
(k)
t−1 if αt = k, (6)

where xt ∈ RD and ut ∈ RF are the states and controls at
time t respectively, and αt ∈ {1, . . . ,K} is a mode indicator
variable that indicates one of K dynamics modes at time t.

A time series of observations from time a to time b (inclu-
sive) is denoted by xa:b (analogously for other variables). A
single input is denoted as x̂t−1 = (xt−1,ut−1), all inputs are
denoted as x̂1:T , and the set of all outputs as ∆x1:T . The dth

dimension of the kth mode’s latent transition dynamics func-
tion f (k), evaluated at x̂t−1, is denoted f

(k)
t,d = f

(k)
d (x̂t−1),

for all dimensions as f
(k)
t and at all data points as f

(k)
1:T .

The model is built upon sparse GP priors on each of
the transition dynamics functions f (k) with independent GPs
placed on each state dimension d,

p
(
f
(k)
1:T | x̂1:T , f̂

(k)
)

=

T∏
t=1

D∏
d=1

p
(
f
(k)
t,d | x̂t−1, f̂

(k)
d

)
(7)

where p
(
f
(k)
t,d | x̂t−1, f̂

(k)
d

)
is a sparse GP conditional (Eq.

5). The M inducing inputs and outputs associated with the dth

dimension of the kth mode’s latent function f (k) are denoted
as ζ

(k)
d and f̂

(k)
d respectively. They are collected as ζ(k) and

f̂ (k) for all output dimensions and as ζ and f̂ for all modes.
For notational conciseness, the dependency on the inducing
inputs ζ(k) is dropped throughout. The process noise in each
mode is modelled as,

p
(

∆xt|f (k)t

)
= N

(
∆xt | f (k)t , diag

[(
σ
(k)
1

)2
, . . . ,

(
σ
(k)
D

)2])
,

where
(
σ
(k)
d

)2
represents the noise variance associated with

the dth dimension of the kth mode.

C. Gating Network
The gating network governs how the dynamics switch

between modes. This work is interested in spatially varying
modes so formulates an input dependent Categorical distri-
bution over the mode indicator variable αt,

P (αt | ht) =

K∏
k=1

(Pr(αt = k | ht))[αt=k] = softmax(ht), (8)

where [αt = k] denotes the Iverson bracket. The probabilities
of this Categorical distribution Pr(αt = k | ht) are obtained
by evaluating K latent gating functions {h(k)}Kk=1 and nor-
malising their output. Each gating function evaluated at x̂t−1

is denoted as h(k)t = h(k)(x̂t−1) and at all observations h(k)1:T .
The set of all gating functions evaluated at x̂t−1 is denoted as
ht and at all observations as h1:T . Each gating function h(k)

describes how its corresponding mode’s mixing probability
varies over the input space.

This work is interested in finding trajectories that can
avoid areas of the transition dynamics model that cannot
be predicted confidently. Placing GP priors on each gating
function provides a principled approach to modelling the
epistemic uncertainty associated with each gating function.
The gating function’s posterior covariance is a quantitative
value that can be exploited by the trajectory optimisation.

Each gating function’s inducing inputs are denoted ξ(k)

and outputs as ĥ(k). For all gating functions, they are
collected as ξ and ĥ respectively. The probability that the tth

observation is generated by mode k given the inducing inputs
is obtained by marginalising the set of gating functions ht,

Pr(αt = k | x̂t−1, ĥ) =

∫
softmaxk(ht)p(ht | x̂t−1, ĥ)dht,

where p(ht | x̂t−1, ĥ) =
∏K

k=1 p
(
h
(k)
t | x̂t−1, ĥ

(k)
)

is the
K independent sparse GP priors on the gating functions.
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Fig. 3 – Contour plots showing the GP posterior mean (left) and variance (right) over the gating function associated with dynamics mode
1 after training on a subset of the quadcopter data set. The initial and optimised trajectories are overlayed to show the influence of the
GP’s mean and variance on the trajectory optimisation with different λ settings.

D. Generative Model
This model makes single-step probabilistic predictions,

where the predictive distribution over the state difference
∆xt is given by a mixture of Gaussians. This provides the
model flexibility to model multimodal transition dynamics f
as mixtures of K modes. With this formulation, the marginal
likelihood can be rewritten as,

p(∆x1:T |x̂1:T ) =

T∏
t=1

K∑
k=1

(〈
Pr
(
αt = k|x̂t−1, ĥ

)〉
p(ĥ|ξ)︸ ︷︷ ︸

Mixing Probability〈
p
(

∆xt|x̂t−1, f̂
(k)
)〉

p(f̂(k)|ζ(k))︸ ︷︷ ︸
Dynamics mode k

)
, (9)

where 〈·〉p(x) denotes an expectation under p(x). Fig. 2 shows
the graphical model where the K latent gating functions
h(k) are evaluated and normalised to obtain the mixing
probabilities Pr(αt = k | x̂t−1). The mode indicator variable
αt is then sampled from a Categorical distribution governed
by these probabilities. The indicated mode’s latent function
f (k) and process noise σ(k) are then evaluated to generate
the state difference ∆xt.

E. Inference

The marginal likelihood in Eq. 9 is based upon sparse GP
priors which become exact when ξ = ζ = x̂1:T . We derive
a variational approximation based on sparse approximations
that provides scalability via stochastic gradient-based optimi-
sation. Following the approach by [22], the probability space
has been augmented with a set of M inducing points for
each GP. Instead of collapsing these inducing points, they
are explicitly represented as a variational distribution, as seen
in [8]. A mean-field approximation is used for each GP’s
inducing variable distribution,

q
(
f̂ , ĥ
)

=

K∏
k=1

(
N
(
ĥ(k) |m(k)

h ,S
(k)
h

)
(10)

D∏
d=1

N
(
f̂
(k)
d |m(k)

f,d,S
(k)
f,d

))
.

This variational distribution and Jensen’s inequality are used
to lower bound the log marginal likelihood logp(∆x1:T |
x̂1:T ),

L =

T∑
t=1

〈
log

K∑
k=1

Pr(αt = k | x̂t−1, ĥ)p(∆xt | x̂t−1, f̂
(k))

〉
q(f̂ ,ĥ)

−
K∑
k=1

KL
(
q
(
f̂ (k)
)
|| p
(
f̂ (k) | ζ(k)

))
−

K∑
k=1

KL
(
q
(
ĥ(k)

)
|| p
(
ĥ(k) | ξ(k)

))
. (11)

Importantly, taking samples for single data points is straight-
forward and can be implemented efficiently. The variational
expectation is not analytically tractable due to the variational
distributions, so it is approximated by drawing single samples
from q(f̂) and q(ĥ). The inducing inputs and kernel hyperpa-
rameters are optimised alongside the variational parameters.

F. Results
The model is trained on data collected from the velocity-

controlled quadcopter experiment. The controls were kept
constant during data collection to reduce the dynamics model
to ∆xt = f(xt−1). The trajectory optimisation then exploits
differential flatness [19] to recover the velocity controls.
The model was trained with K = 2 dynamics modes, and
a subset of the observations were withheld during training
to test the model’s ability to model epistemic uncertainty.
Fig. 1 shows mode 1’s mixing probability over the domain
which has clearly learned two dynamics modes characterised
by process noise. Fig. 3 shows the predictive mean (left)
and variance (right) of the gating function associated with
dynamics mode 1 (h(1)). The mean is high where the model
believes mode 1 is responsible for predicting, low where
it believes another mode is responsible, and zero where it
is uncertain. The variance (right) has also clearly captured
information regrading the epistemic uncertainty, i.e. where
there are no observations.

IV. STAGE TWO - TRAJECTORY OPTIMISATION

In stage one, our method learns a probabilistic represen-
tation of the transition dynamics using a MoGPE model.



Importantly, the GP-based gating network infers important
information regarding how the transition dynamics switch
between modes over the input space. The length of a trajec-
tory x̄ from x0 to xf on the manifold parameterised by the
desired mode’s gating function (Fig. 3 left) increases when it
passes over the contours - analogous to climbing a hill. Given
appropriate scaling, shortest trajectories on the manifold will
be those that attempt to follow the contours and remain in a
single dynamics mode.

In stage two, we exploit this intuition and formulate a
geometric cost function to solve the trajectory optimisation
in Eq. 2, i.e. find trajectories from x0 to xf that minimise the
cost in Eq. 3. We then exploit a classic result of Riemannian
geometry that allows us to project the trajectory optimisation
onto a latent ODE whose solutions implicitly minimise
our geometric cost. This section now introduces our cost
function, recaps concepts of Riemannian geometry and then
details how this latent ODE is solved using direct collocation.

A. A Geometric Cost Function
The gmode term in Eq. 3 can be expressed as finding

shortest trajectories x̄ on the manifold parameterised by the
desired mode’s gating function. We can measure lengths on
the manifold by mapping the trajectory x̄ through the desired
mode’s gating function h(k),

Length
(
h(k)(x̄)

)
=

∫ tf

t0

∥∥∥ḣ(k)(x(t))
∥∥∥ dt =

∫ tf

t0

‖Jxt ẋ(t)‖dt,

Jxt =
∂h(k)

∂x(t)
∈ R1×D (12)

This implies that the length of a trajectory on the manifold
can be calculated in the input space using a locally defined
norm,

‖Jxt
ẋ(t)‖ =

√
ẋ(t)JT

xt
Jxt

ẋ(t) =
√

ẋ(t)Gxt
ẋ(t) (13)

where Gxt
is a symmetric positive definite matrix, akin to

a local Mahalanobis distance measure. This gives rise to the
definition of a Riemannian metric, a smoothly changing inner
product structure [2],

Definition 4.1 (Riemannian Metric): A Riemannian metric
G : X → RD×D is a smooth function that assigns a
symmetric positive definite matrix to any point in X .
Given this definition, we formulate a geometric cost function,

Jgeo = min Length(h(k)(x̄)) = min

∫ tf

t0

‖ẋ(t)‖G(x(t)) dt (14)

where G(x(t)) represents the Riemannian metric tensor as-
sociated with the desired mode’s gating function. Eq. 14 has
encoded the gmode term from Eq. 3 but not the gepistemic term.
We address this by observing that our manifold is stochastic
(because it is parameterised by a stochastic function) and
extending our metric for probabilistic geometries.

Following [23] we use a metric tensor that captures the
variance in the manifold by means of a probability distri-
bution. If a GP is differentiable, then its derivative is also
a GP (because the differential operator is linear). Thus,
the predictive distribution over the Jacobian given a new

input J∗ = J(x∗) can be obtained by conditioning on the
inducing variables ĥ(k) and then marginalising them with
the variational distribution q

(
ĥ(k)

)
[12],

p
(
J∗|x∗, ξ

(k)
)

=

∫
q
(
ĥ(k)

)
p
(
J∗ | x∗, ĥ

(k), ξ(k)
)

dĥ(k)

= N (J∗ | µJ ,ΣJ) . (15)

This induces a non-central Wishart distribution over the
metric tensor G,

G =WD

(
p,ΣJ ,E

[
JT
]
E[J]

)
, (16)

where p is the number of degrees of freedom (always one in
our case). The expected metric tensor is given by,

E[G] = E[JT ]E[J] + ΣJ . (17)

This expected metric tensor includes a covariance term ΣJ

which implies that lengths on the manifold increase in areas
of high covariance. This is a desirable behaviour because it
encourages trajectories minimising Eq. 14 to avoid regions
of the learned dynamics with high epistemic uncertainty,
encoding the gepistemic cost term in Eq. 3.

B. Implicit Trajectory Optimisation
Trajectories minimising Eq. 14 are length minimising

curves on the Riemannian manifold endowed with the metric
G, and are known as geodesics. A classic result of differen-
tial geometry [2] is that solutions to Eq. 14 (i.e. geodesic
trajectories) must satisfy the second-order ODE,

ẍ(t) = fG(t, ẋ,x)

= −1

2
G−1(x(t))

[
∂ vec[G(x(t))]

∂x(t)

]T
(ẋ(t)⊗ ẋ(t)) , (18)

where vec[G(x(t)]) stacks the columns of G(x(t)) and ⊗
denotes the Kronecker product. Thus, projecting our trajec-
tory optimisation onto Eq. 18 with the expected metric from
Eq. 17 is equivalent to solving the trajectory optimisation in
Eq. 2 with the cost function in Eq. 3.

However, since neither ẋ(t0) nor ẋ(tf ) are known, it can-
not be solved with simple forward or backward integration.
Instead, the problem is transcribed using differential flatness
[15, 19]. A set of outputs z(t) are defined such that the states
x(t) and controls u(t) can be expressed in terms of the flat
output z(t) and a finite number of its derivatives,

x(t) = A(z(t), ż(t), . . .) (19)
u(t) = B(z(t), ż(t), . . .). (20)

In the velocity-controlled quadcopter example, the flat output
is the state z(t) = x(t) and the control is simply the state
derivative u(t) = ż(t). The original trajectory optimisation
problem can then be converted to finding z(t) and ż(t) for t ∈
[t0, tf ] subject to the boundary conditions and the dynamics,

ẍ(z(t), ż(t)) = fG(t, ẋ(z(t), ż(t)),x(z(t), ż(t))). (21)

Collocation methods are used to transcribe continuous-time
trajectory optimisation problems into nonlinear programs, i.e.
constrained parameter optimisation [5, 11]. The expected
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Fig. 5 – Comparison of the initial and optimised trajectories’ at
avoiding regions of high epistemic uncertainty. It shows the poste-
rior variance associated with the desired mode’s gating function.

metric in Eq. 17 is substituted into Eq. 21 and solved via
direct collocation. This work implements a simple Hermite-
Simpson collocation method that enforces the state derivative
interpolated by the polynomials to equal the geodesic ODE
fG at the midpoints between a set of I collocation points
{zi}Ii=1. This is achieved through the collocation defects,

∆i+ 1
2

= z̈i+ 1
2
− fG(ti+ 1

2
, żi+ 1

2
, zi+ 1

2
) (22)

where z̈i+ 1
2

, żi+ 1
2

, zi+ 1
2

are obtained by interpolating be-
tween zi and zi+1. Eq. 22 defines a set of constraints
ensuring trajectories are solutions to the geodesic ODE fG.
The nonlinear program that this work solves is given by,

min
z(t),ż(t)

∫ tf

t0

1dt (23)

s.t. Eq. 22, (24)
x (z(t0), ż(t0)) = x0, (25)
x(z(tf ), ż(tf )) = xf (26)

This is solved using Sequential Least Squares Programming
(SLSQP) in SciPy.

V. QUADCOPTER EXPERIMENTS

The trajectory optimisation is tested on the quadcopter
control problem shown in Fig. 1. It projects the optimisation
onto the desired mode’s learned gating function, shown in
Fig. 3. It seeks to find trajectories between x0 and xf that 1)
remain in the non-turbulent mode and 2) avoid regions of the
learned transition dynamics with high epistemic uncertainty.
To aid with user control the metric tensor in Eq. 17 is
modified with a weighting parameter λ that enables the
relevance of the covariance term to be adjusted,

G̃ = E[JT ]E[J] + λΣJ . (27)

TABLE I – Comparison of performance with different settings of
λ. The performance measures are summed over collocation points.

Trajectory Mixing Probability Epistemic Uncertainty∑I
i=1 Pr(αi = 1 | zi)

∑I
i=1 V[h(1)(zi)]

Initial 7.480 1.345
Optimised λ = 20 6.091 1.274
Optimised λ = 0.5 8.118 1.437

Setting λ to be small should find trajectories that prioritise
staying in the desired mode, whereas selecting a large λ
should find trajectories that prioritise avoiding regions of
the dynamics with high epistemic uncertainty. The trajectory
optimisation is tested with two λ settings.

The initial (cyan) trajectory in Fig. 3 is initialised with 10
collocation points indicated by the crosses. The trajectories
are compared via mode 1’s mixing probability and its gating
function’s GP variance over the trajectories. We want to
maximise the probability of being in our desired mode
whilst minimising the amount of variance (due to epistemic
uncertainty). The results are shown in Table I. It is clear from
Fig. 3 (left) and Fig. 4 that for λ = 0.5, trajectories favour
remaining in dynamics mode 1 at the cost of entering regions
of the learned dynamics with high epistemic uncertainty
(shown in Fig. 5). For λ = 20, the trajectory has tried to
remain in dynamics mode 1 at the start of the trajectory but
then hits the area of high epistemic uncertainty and favours
avoiding this region over remaining in dynamics mode 1.

Although not tested, we believe that our approach is
theoretically sound and can easily be extended to more than
two dynamics modes. However, it is interesting to consider
if this is even necessary given our goals. For example,
in the quadcopter experiment, we intentionally instantiated
the transition dynamics model with two dynamics modes,
although in reality there could be more. We engineered our
desired dynamics mode to have a noise variance that we
deemed operatable. We then used the other dynamics mode
to explain away all of the un-operatable modes. We think
that in most scenarios a similar approach could be followed.

VI. CONCLUSION

This paper presents our novel two-stage method for
performing trajectory optimisation in unknown multimodal
dynamical systems. The first stage learns a probabilistic
transition dynamics model using a MoGPE method with
a GP-based gating network. The trajectory optimisation is
then projected onto a probabilistic Riemannian manifold
parameterised by the gating network. The method is eval-
uated on a real-world quadcopter example that shows the
transition dynamics model can successfully learn a factorised
representation of the underlying dynamics modes. Given
a start and end state, the trajectory optimisation can be
tuned to find trajectories that either prioritise 1) remaining
in a desired dynamics mode or 2) avoiding regions of high
epistemic uncertainty. In future work it would be interesting
to explore active learning techniques that can avoid entering
the undesired dynamics modes during data collection.
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