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TL;DR

= We present ModeRL, a model-based RL algorithm constrained to a
single dynamic mode.

= This is a difficult problem because the mode constraint is a hidden
variable associated with the environment’s dynamics.

= Qur probabilistic dynamic model infers the mode constraint

alongside the underlying dynamic modes.
= ModeRL leverages the model’s well-calibrated uncertainty to:

= Enforce the mode constraint up to a given probability during training,
= Escape local optima induced by the constraint, see Figure 1.

= We validate ModeRL in a simulated quadcopter navigation task.

Problem Statement

» Dynamics: In a given state s, € S C R”=, one of K dynamic modes
f={fr:SxA— S} (and associated noise models €;) governs the

system, as indicated by ao: § — {1,..., K}:
St+1 — f/c(St, at) + €k ¢, If Oé(St) = k. (1)

= Goal: Find policy 7 that maximises sum of rewards in expectation over
transition noise J(w, f) = EeO:T[ZtT:oT(Staat) | so} , whilst remaining in
the desired dynamic mode’s k* state domain Si- = {s € S| a(s) = k*}:
m =argmax J(m, f) st oa(s) =k Vte{0,...,T}, (2)
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mode constraint

= PROBLEM: can’t satisfy constraint during training!

= S0 relax to being mode-constrained with high probability...

ModeRL

Model Learning

= Goal Jointly infer mode constraint alongside dynamic modes:

= Data set of state-action inputs and state diff outputs D = {&;, As;1}Y, = (S, AS),

= Formulate prior such that ModeRL can potentially never violate the constraint,
= Disentangle sources of uncertainty in the mode constraint.

= Dynamic modes GP prior over each dynamic mode,
= Each mode should be assigned a subset of the state-action inputs S; C S,
fk(Sk) ‘ a~N (uk(gk), /-Ck(sk, Sk>) : Sk = {ét S S | Oz(St) = k}

= But we sidestep the assignment of observations to modes by augmenting each
mode with its own inducing points ¢, € S x A,

fe(Cr) ~ N (e (Cr), kr(Cr, Cr)) q(fe(Ce)) =N (f(Cp) | my, LiLf)
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Figure 1. Mode-constrained quadcopter navigation. The goal is to navigate to the black star without entering the turbulent dynamic mode (-:=:+). Left plot shows that without our
0-mode-constraint the greedy strategy fails to remain in the desired mode. Second left plot shows that without our exploration term it gets stuck in a local optimum. Right four plots

show iterations of ModeRL, which successfully navigates to the target with constraint satisfaction during training. The d-mode-constraint ( s
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Figure 2. Dynamic model's augmented joint probability space.

= Mode constraint Model as GP classifier,
= i.e. classification likelihood parameterised by K functions h = {h; : § — R}
with GP priors:

ar | si, h(s;) ~ softmaxy(h(s)  hi(S) ~ N (u(S), kx(S, S)) (3)

= Augment with inducing points N (hx(€) | my, IAJ/@IAJZ)

= Variational inference Optimise variational params {m;, my, Ly, ﬁk}le,
inducing inputs {¢x}i-,, € and GP hyperparams/noise using ELBO.

Planning
Open-loop trajectory optimisation:
argmax max E, . p,) (7, fir)] +68H [~ (S07)] (4a)
a) aAl,...,d7—_1\4 _y \ - 4

VO
greedy exploitation

s.t. Pr <Ozt = k" ‘ S0, A)-¢, DO:i) > 1 — 0 Vte {0, Ceey
5-mode‘cgnstraint

exploration

T}, (4b)

= Greedy exploitation Expected objective under dynamic’s posterior,
= Multi-step predictions Assume always in desired dynamic mode,

= SO we can approximate multi-step predictions using moment-matching,
= For quadratic reward funcs E,4,.p,.) [/ (7, fi-)] has closed form.

= Exploration Entropy of mode constraint’s GP posterior,
= Needed to escape local optima induced by constraint.

= 9-mode constraint Enforces constraint up to a given probability.
= For two dynamic modes the §-mode constraint has closed form.

) expands at each episode 1.

Experiments
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Figure 3. Constraint level ablation Left shows that tighter constraints (lower §) results in
fewer constraint violations. However, training curves (right) show that if constraint is
too tight (i.e. 6 <0.2) then ModeRL gets stuck in local optima. §§ = 0.4 (=) converged
in fewer episodes by using an exponentially decaying schedule from § = 0.4 at episode

1 = 0.

= Greedy exploitation (baseline) fails - Fig. 1 left
= Without our mode constraint the greedy strategy violates the mode constraint.
= \Without our exploration term the greedy strategy gets stuck in a local optimum.

= ModeRL works! - Fig. 1 right

ModeRL has constraint satisfaction during training - Fig. 3

= Tightening constraint (lower §) leads to less constraint violations during training,
= But if too tight (i.e. § < 0.2) it can make the problem infeasible,

= How to set §? A schedule works well in practice, see 65 = 0.4 (=

) in Fig. 3.

Outlook

ModeRL must violate the mode constraint in order to learn it,
= Can we use external sensors to infer constraint without violating it?

= We use an open-loop policy,
= Can we improve speed so that we can get a closed-loop policy via MPC?

= Code available @ https://github.com/aidanscannell/moderl
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