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TL;DR

We present ModeRL, a model-based RL algorithm constrained to a

single dynamic mode.

This is a difficult problem because the mode constraint is a hidden

variable associated with the environment’s dynamics.

Our probabilistic dynamic model infers the mode constraint

alongside the underlying dynamic modes.
ModeRL leverages the model’s well-calibrated uncertainty to:
Enforce the mode constraint up to a given probability during training,

Escape local optima induced by the constraint, see Figure 1.

We validate ModeRL in a simulated quadcopter navigation task.

Problem Statement

Dynamics: In a given state st ∈ S ⊆ RDx, one of K dynamic modes

f = {fk : Sk × A → S}K
k=1 (and associated noise models εk) governs the

system, as indicated by α : S → {1, . . . , K}:
st+1 = fk(st, at) + εk,t, if α(st) = k. (1)

Goal: Find policy π that maximises sum of rewards in expectation over

transition noise J(π, f ) = Eε0:T

[∑T
t=0 r(st, at) | s0

]
, whilst remaining in

the desired dynamic mode’s k∗ state domain Sk∗ = {s ∈ S | α(s) = k∗}:
π∗ = arg max

π∈Π
J(π, f ) s.t. α(st) = k∗ ∀t ∈ {0, . . . , T}︸ ︷︷ ︸

mode constraint

, (2)

PROBLEM: can’t satisfy constraint during training!
So relax to being mode-constrained with high probability...

ModeRL

Model Learning

Goal Jointly infer mode constraint alongside dynamic modes:
Data set of state-action inputs and state diff outputs D = {ŝt, ∆st+1}N

t=1 = (Ŝ, ∆S),
Formulate prior such that ModeRL can potentially never violate the constraint,

Disentangle sources of uncertainty in the mode constraint.

Dynamic modes GP prior over each dynamic mode,
Each mode should be assigned a subset of the state-action inputs Ŝk ⊆ Ŝ,

fk(Ŝk) | α ∼ N
(
µk(Ŝk), kk(Ŝk, Ŝk)

)
, Ŝk = {ŝt ∈ Ŝ | α(st) = k}

But we sidestep the assignment of observations to modes by augmenting each

mode with its own inducing points ζk ∈ S × A,

fk(ζk) ∼ N (µk(ζk), kk(ζk, ζk)) q(fk(ζk)) = N
(
fk(ζk) | mk, LkLT
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Figure 1. Mode-constrained quadcopter navigation. The goal is to navigate to the black star without entering the turbulent dynamic mode ( ). Left plot shows that without our

δ-mode-constraint the greedy strategy fails to remain in the desired mode. Second left plot shows that without our exploration term it gets stuck in a local optimum. Right four plots

show iterations of ModeRL, which successfully navigates to the target with constraint satisfaction during training. The δ-mode-constraint ( ) expands at each episode i.
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Figure 2. Dynamic model’s augmented joint probability space.

Mode constraint Model as GP classifier,
i.e. classification likelihood parameterised by K functions h = {hk : S → R}K

k=1
with GP priors:

αt | st, h(st) ∼ softmaxk(h(st)) hk(S) ∼ N
(
µ̂k(S), k̂k(S, S)

)
(3)

Augment with inducing points N (hk(ξ) | m̂k, L̂kL̂T
k )

Variational inference Optimise variational params {mk, m̂k, Lk, L̂k}K
k=1,

inducing inputs {ζk}K
k=1, ξ and GP hyperparams/noise using ELBO.

Planning

Open-loop trajectory optimisation:

arg max
a0

max
a1,...,aT−1

Ep(fk∗ | D0:i) [J(π, fk∗)]︸ ︷︷ ︸
greedy exploitation

+β H [hk∗ (s0:T )]︸ ︷︷ ︸
exploration

(4a)

s.t. Pr (αt = k∗ | s0, a0:t, D0:i) ≥ 1 − δ︸ ︷︷ ︸
δ-mode constraint

∀t ∈ {0, . . . , T}, (4b)

Greedy exploitation Expected objective under dynamic’s posterior,
Multi-step predictions Assume always in desired dynamic mode,

So we can approximate multi-step predictions using moment-matching,

For quadratic reward funcs Ep(fk∗ | D0:i) [J(π, fk∗)] has closed form.

Exploration Entropy of mode constraint’s GP posterior,
Needed to escape local optima induced by constraint.

δ-mode constraint Enforces constraint up to a given probability.
For two dynamic modes the δ-mode constraint has closed form.

Experiments
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Figure 3. Constraint level ablation Left shows that tighter constraints (lower δ) results in
fewer constraint violations. However, training curves (right) show that if constraint is

too tight (i.e. δ ≤ 0.2) then ModeRL gets stuck in local optima. δs
0 = 0.4 ( ) converged

in fewer episodes by using an exponentially decaying schedule from δ = 0.4 at episode

i = 0.

Greedy exploitation (baseline) fails - Fig. 1 left
Without our mode constraint the greedy strategy violates the mode constraint.

Without our exploration term the greedy strategy gets stuck in a local optimum.

ModeRL works! - Fig. 1 right

ModeRL has constraint satisfaction during training - Fig. 3
Tightening constraint (lower δ) leads to less constraint violations during training,

But if too tight (i.e. δ ≤ 0.2) it can make the problem infeasible,

How to set δ? A schedule works well in practice, see δs
0 = 0.4 ( ) in Fig. 3.

Outlook

ModeRL must violate the mode constraint in order to learn it,
Can we use external sensors to infer constraint without violating it?

We use an open-loop policy,
Can we improve speed so that we can get a closed-loop policy via MPC?

Code available @ https://github.com/aidanscannell/moderl
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