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Abstract

Model-based reinforcement learning (RL) algo-
rithms do not typically consider environments
with multiple dynamic modes, where it is bene-
ficial to avoid inoperable or undesirable modes.
We present a model-based RL algorithm that
constrains training to a single dynamic mode
with high probability. This is a difficult prob-
lem because the mode constraint is a hidden vari-
able associated with the environment’s dynam-
ics. As such, it is 1) unknown a priori and 2) we
do not observe its output from the environment,
so cannot learn it with supervised learning. We
present a nonparametric dynamic model which
learns the mode constraint alongside the dynamic
modes. Importantly, it learns latent structure that
our planning scheme leverages to 1) enforce the
mode constraint with high probability, and 2)
escape local optima induced by the mode con-
straint. We validate our method by showing that
it can solve a simulated quadcopter navigation
task whilst providing a level of constraint satis-
faction both during and after training.

1 INTRODUCTION

Over the last decade, reinforcement learning (RL) has be-
come a popular paradigm for controlling dynamical sys-
tems (Hewing et al., 2020; Sutton and Barto, 2018).
However, RL algorithms do not typically prevent agents
from entering inoperable or undesirable dynamic modes
(Def. 3.1). This would be desirable when flying a quad-
copter to a target state whilst avoiding turbulent dynamic
modes, or driving a car whilst avoiding dangerous road sur-
faces. In these examples, we seek agents that can learn
sample-efficiently, whilst avoiding these inoperable or un-
desirable dynamic modes.
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Figure 1: Mode-constrained quadcopter navigation. Top-down
view of a quadcopter subject to 1) an operable dynamic mode
(blue) and 2) an inoperable, turbulent dynamic mode induced by a
strong wind field (red). The goal is to navigate to the target whilst
remaining in the operable dynamic mode (blue). We achieve this
by gradually expanding the δ-mode-constrained region (Def. 3.3)
at each episode i, i.e. improving our knowledge of the latent mode
constraint, by training our dynamic model on new data D0:i.

One approach to solving this problem is to constrain the
agent to a single dynamic mode during training. How-
ever, in this mode-constrained setting, the agent does not
observe the constraint. Instead, the mode constraint is a
hidden variable associated with the environment’s dynam-
ics, which are unknown a priori. As a result, our constraint
must be simultaneously learned and enforced.

When simultaneously learning and enforcing a constraint
in RL, it is impossible to guarantee constraint satisfaction.
This emphasises the need to learn sample efficiently, as
each interaction with the environment could result in a con-
straint violation. Further to this, constraints can prevent an
agent from solving the main task (Roy et al., 2022). This
is because they can introduce local optima that make the
space of feasible policies hard to navigate.

In this paper, we present ModeRL1, a Bayesian model-
based RL algorithm, which simultaneously learns and en-
forces the mode constraint using well-calibrated uncer-

1Code @ https://github.com/aidanscannell/moderl/

https://github.com/aidanscannell/moderl/
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tainty estimates from a learned dynamic model. Our main
contributions are as follows:

1. A method for jointly inferring the mode constraint
alongside the underlying dynamic modes.

2. A planning algorithm that leverages the dynamic
model’s well-calibrated uncertainty estimates to 1) en-
force the mode constraint up to a given probability,
and 2) combat local optima induced by the constraint.

3. We validate ModeRL in a simulated quadcopter navi-
gation task.

2 RELATED WORK

To the best of our knowledge, there is no prior work ad-
dressing mode-constrained RL (see Eq. (4)). However, we
can compare our method to related works, which we detail
here.

Constrained Markov decision processes (CMDPs) A
common paradigm when considering constraints in RL is
to consider CMDPs (Altman, 1999; Wachi et al., 2018).
In this setting, the agent must satisfy a set of constraints
defined by additional cost functions, whose output is ob-
served from the environment. In contrast, the output of
the constraint function is not observed in mode-constrained
RL, so we cannot learn it using supervised learning. Our
work has similarities to Schreiter et al., 2015 as they use a
Gaussian process (GP) classifier to identify safe and unsafe
regions when learning dynamic models in an active learn-
ing setting. However, they also assume that they observe
the output of their constraint function.

Safe model predictive control (MPC) Koller et al., 2018
and Hewing et al., 2020 consider safe MPC schemes which
use GP dynamic models to certify the safety of actions.
However, they do not consider environments with multi-
modal dynamics. Arcari et al., 2020 is the most similar
work to our own, as they consider safe stochastic MPC
in dynamical systems with multiple operating modes (syn-
onymous to our dynamic mode in Def. 3.1). Our work dif-
fers in that we use nonparametric methods to jointly iden-
tify the mode constraint and the dynamic modes.

Mode remaining planning Scannell et al., 2021 present a
mode remaining trajectory optimisation algorithm that uses
a learned dynamic model. However, they do not enforce
any constraints. Further to this, they assume access to the
environment a priori. In contrast, we consider the model-
based RL setting, where we enforce the mode constraint
during exploration (i.e. data collection) as well.

Safety as stability In low-dimensional continuous-control
problems, Berkenkamp et al., 2017 propose to encode
safety as stability via a learned dynamic model. However,
their method assumes that the environment’s dynamics are

Lipschitz continuous. Although we do not provide details
in this paper, we believe our method could be used to re-
move this assumption by constraining exploration to a sub-
set of the dynamics that are Lipschitz continuous.

In summary, the constraint function in mode-constrained
RL is not only unknown a priori, but its output is also not
observed. This is because it is a hidden variable associated
with the environment’s dynamics. As such, it cannot be
learned with supervised learning. In the remainder of this
paper, we present a model-based RL method that uses a
nonparametric dynamic model to infer the mode constraint
– as a latent variable – alongside the dynamic modes. Im-
portantly, it simultaneously learns and enforces the mode
constraint (with high probability) during training.

3 PROBLEM STATEMENT

We consider environments with states st ∈ S ⊆ RDx , ac-
tions at ∈ A ⊆ RDu and multimodal, stochastic transition
dynamics, given by

st+1 = fk(st,at) + ϵk,t, if α(st) = k, (1)

where the discrete mode indicator function α : S →
{1, . . . ,K} indicates which of the K underlying dynamic
modes {fk : Sk × A → S}Kk=1 and associated i.i.d. noise
models ϵk,t governs the environment at a given time step t.
We refer to the output of the mode indicator function as the
mode indicator variable αt = α(st) ∈ {1, . . . ,K}.

Definition 3.1 (dynamic mode) Let α : S → {0, . . . ,K}
denote a function which partitions a dynamical system’s f
state space S into K pair-wise disjoint state domains Sk =
{s ∈ S | α(s) = k}. Given a dynamical system comprising
of K functions, f = {fk : Sk × A → S}Kk=1, where each
function governs the system at a particular region of the
state space S, we formally define a dynamic mode as,

fk : Sk ×A → S. (2)

Notice from Def. 3.1 that our dynamic modes are free to
leave their state spaces Sk and enter other modes S.

Problem statement We consider controlling the stochas-
tic system in Eq. (1) in an episodic setting, over a horizon
T . We assume that after each episode the system is reset
to a known initial state s0. We consider general determin-
istic policies π ∈ Π, which encapsulates both closed-loop
policies π(st) and open-loop policies π(t). For a known
transition dynamic model f : S × A → S , the perfor-
mance of a policy π is the sum of rewards over the horizon,
in expectation over the transition noise,

J(π, f) = Eϵ0:T

[
T∑

t=0

r(st,at) | s0
]
. (3)
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The goal of our work is to find the optimal policy π∗ whilst
remaining in a desired dynamic mode k∗,

argmax
π∈Π

J(π, f) s.t. α(st) = k∗ ∀t ∈ {0, . . . , T}.
(4)

Formally, a mode-constrained system is defined as follows.

Definition 3.2 (mode-constrained) Let f : S × A → S
denote a multimodal dynamical system and Sk∗ = {s ∈
S | α(s) = k∗} denote the state domain of the desired
dynamic mode k∗. Given an initial state s0 ∈ Sk∗ and a
policy π ∈ Π, the controlled system is said to be mode-
constrained under the policy π iff:

f(st, π(st, t)) + ϵt ∈ Sk∗ ∀t ∈ {0, . . . , T} (5)

Given that neither the underlying dynamic modes {fk}Kk=1,
nor how the system switches between them α, are known
a priori, it is not possible to solve Eq. (4) with the mode
constraint in Def. 3.2. Therefore, we relax the requirement
to finding a mode-constrained policy with high probabil-
ity. We formally define a δ-mode-constrained policy as fol-
lows.

Definition 3.3 (δ-mode-constrained) Let f : S ×A → S
denote a multimodal dynamical system and Sk∗ = {s ∈ S |
α(s) = k∗} denote the state domain of the desired dynamic
mode k∗. Given an initial state s0 ∈ Sk∗ and δ ∈ (0, 1],
a controlled system is said to be δ-mode-constrained under
the policy π iff:

Pr(∀t ∈ {0, . . . , T} : f(st, π(st, t)) + ϵt ∈ Sk∗) ≥ 1− δ.
(6)

Policies satisfying this δ-mode-constrained definition
should remain in the desired dynamic mode with probabil-
ity up to 1−δ. It is worth noting that the agent would not be
able to explore the environment without relaxing the mode
constraint from Def. 3.2. Increasing δ promotes exploration
but also increases the chance of violating the mode con-
straint. Intuitively, δ, which we refer to as the constraint
level, makes the mode-constrained problem feasible, whilst
still providing some level of constraint satisfaction during
training.

Initial mode remaining controller In robotics applica-
tions, an initial set of poor-performing controllers can nor-
mally be obtained via simulation or domain knowledge. We
assume access to an initial data set of state transitions D0 =
{(st,at), st+1}TN0

t=1 from N0 episodes of length T . We use
it to learn a predictive dynamic model p(st+1 | st,at,D0)
which is locally accurate around the start state s0.

Assumption 3.1 A state transition data set has been col-
lected D0 = {(st,at), st+1}TN0

t=1 from an initial region of
the state space S0 ⊆ Sk∗ , which belongs to the desired
dynamic mode k∗ and contains the start state s0 ∈ S0.

Algorithm 1 ModeRL

Require: Start state s0, desired dynamic mode k∗, initial
data set D0, policy π0, dynamic model p(st+1 | ŝt,D0)

1: for i ∈ {0, 1, . . . , num episodes} do
2: while not converged do
3: Sample Nb state transitions B ∼ D0:i

4: Update dynamics using Eq. (12) with B
5: end while
6: Optimise policy πi+1 using Eq. (16)
7: Collect data Di+1 using πi+1

8: Update agent’s data set D0:i+1 = Di+1 ∪ D0:i

9: end for

Although such a model can be used to learn an initial
policy, it will not work outside of the initial state do-
main S0 and may not be able to find a δ-mode-constrained
policy, due to the model having high epistemic uncer-
tainty. For this reason, we adopt a model-based RL strat-
egy which incrementally explores the environment subject
to a δ-mode constraint. At each episode, it collects data
and uses it to train its dynamic model. This reduces the
dynamic model’s epistemic uncertainty and expands the
δ-mode-constrained region. See Fig. 1.

4 MODE-CONSTRAINED
MODEL-BASED RL

We propose to solve the mode-constrained RL problem
in Eq. (4) by synergising model learning and planning in
a model-based RL algorithm we name mode-constrained
model-based reinforcement learning (ModeRL). Our ap-
proach is detailed in Alg. 1.

4.1 Probabilistic Dynamic Model

ModeRL learns a single-step dynamic model and we adopt
the delta state formulation to regularise the predictive dis-
tribution. We denote a state difference output as ∆st+1 =
st+1 − st and the set of all state difference outputs as ∆S.
We further denote a state-action input as ŝt = (st,at), the
set of all state-action inputs as Ŝ, the set of all state inputs
as S and the state transition data set at episode i as D0:i.

The main goal of our dynamic model is to jointly infer the
mode constraint along with the underlying dynamic modes.
In particular, we would like our model to,

1. Formulate a prior over the mode constraint where
we can encode prior knowledge, potentially enabling
ModeRL to find a policy without ever violating
the mode constraint. In practice, encoding prior
knowledge allows us to exploit Bayesian interpolation
(MacKay, 1992) to reduce the number of constraint
violations during training.
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2. Disentangle the sources of uncertainty in the mode
constraint so that ModeRL can escape local optima in-
duced by the constraint (via intrinsic exploration with
the mode constraint’s epistemic uncertainty).

Marginal likelihood Mixtures of Gaussian process experts
(MoGPE) models are a natural choice for modelling mul-
timodal systems as they automatically infer the assignment
of observations to dynamic modes (experts). Let us start by
introducing the MoGPE marginal likelihood,

p
(
∆S | Ŝ

)
=
∑
α

p (α | S)︸ ︷︷ ︸
gating network

[ K∏
k=1

p
(
∆Sk | Ŝk,θk

)
︸ ︷︷ ︸

dynamic mode k

]
(7)

where Ŝk denotes the set of Nk inputs assigned to dynamic
mode k, i.e. Ŝk = {ŝt ∈ Ŝ | α(st) = k}. Similarly for the
outputs we have ∆Sk = {∆st+1 ∈ ∆S | α(st+1) = k}.
Note that there is a joint distribution corresponding to every
possible combination of assignments of observations to dy-
namic modes. Hence, Eq. (7) is a sum over exponentially
many (KN ) sets of assignments, where α = {α1, . . . , αN}
represents a set of assignments for all observations. This
distribution factors into the product over modes, where
each mode models the joint Gaussian distribution over the
observations assigned to it.

Learning the mode constraint The gating network indi-
cates which dynamic mode governs the system at a given
state input. It is of particular importance in our work as
we use it to represent our mode constraint. Motivated by
synergising model learning and planning, we formulate our
gating network using input-dependent functions – known
as gating functions – and place GP priors over them. In
Sec. 4.3 we exploit the disentangled epistemic uncertainty
represented in our GP-based gating network to help Mod-
eRL escape local optima induced by the mode constraint.
Similar to Tresp, 2000, our gating network resembles a GP
classification model,

p
(
α | Ŝ

)
= Ep(h(S))︸ ︷︷ ︸

GP prior(s)

[ N∏
t=1

p (αt | h(st))︸ ︷︷ ︸
classification likelihood

]
(8)

where p (αt | h(st)) represents a classification likelihood
parameterised by K gating functions h : S → RK . We use
a Bernoulli likelihood when K = 2 and a softmax when
K > 2. We place GP priors on each of the gating functions
p(h(Ŝ)) =

∏K
k=1 N

(
p(hk(Ŝ) | µ̂k(Ŝ), k̂k(Ŝ, Ŝ)

)
, where

µ̂k(·) and k̂k(·, ·) represent the mean and covariance
functions associated with the kth gating function hk. In our
gating network formulation, the GP posteriors represent
the mode constraint’s epistemic uncertainty.

Dynamic modes We model the underlying dynamic modes
as independent GP regression models,

p
(
∆Sk | Ŝk

)
︸ ︷︷ ︸

dynamic mode k

= Ep(fk(Ŝk))︸ ︷︷ ︸
GP prior

[ Nk∏
t=1

p (∆st+1 | fk(ŝt))︸ ︷︷ ︸
Gaussian likelihood

]
,

where each mode’s GP prior is given by p(fk(Ŝk)) =

N
(
fk(Ŝk) | µk(Ŝk), kk(Ŝk, Ŝk)

)
with µk(·) and kk(·, ·)

representing the mean and covariance functions associated
with the kth mode’s GP prior respectively. Note that as the
assignment of observations to modes is not known a priori,
we must infer the assignments from observations. In our
model, each dynamic mode’s Gaussian likelihood repre-
sents the mode’s aleatoric uncertainty (the transition noise
in this case) whilst each mode’s GP posterior represents the
mode’s epistemic uncertainty.

4.2 Dynamic Model Learning

Performing Bayesian inference in our dynamic model
involves finding the posterior over the latent variables
p({f(Ŝ)}Kk=1,h(S) | D0:i), which requires calculating the
marginal likelihood in Eq. (7). As such, exact inference in
our model is intractable due to the marginalisation over the
set of mode indicator variables. For this reason, we resort
to a variational approximation.

Following the approach by Titsias, 2009, we augment the
probability space with a set of inducing variables for each
GP. However, instead of collapsing these inducing vari-
ables, we represent them as variational distributions and
use them to lower bound the marginal likelihood, similar
to Hensman et al., 2013, 2015. Fig. 6 shows the graphical
model of the augmented joint probability space.

Augmented dynamic modes We sidestep the hard assign-
ment of observations to modes by augmenting each dynam-
ics GP with a set of Mfk separate independent inducing
points,

p(fk(ζk)) = N (fk(ζk) | µk(ζk), kk(ζk, ζk)) . (9)

Introducing separate inducing points from each mode’s GP
can loosely be seen as “partitioning” the observations be-
tween modes. However, as the assignment of observations
to modes is not known a priori, the inducing inputs ζk and
variables fk(ζk), must be inferred from observations.

Augmented gating network We follow a similar approach
for the gating network and augment each gating function
GP with a set of Mhk

inducing points,

p(hk(ξ)) = N
(
hk(ξ) | µ̂k(ξ), k̂k(ξ, ξ)

)
. (10)

The distribution over all gating functions is denoted
p(h(ξ)) =

∏K
k=1 p(hk(ξ)). In contrast to the dynamic

modes, the gating function GPs share inducing inputs ξ.
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Marginal likelihood We use these inducing points to ap-
proximate the true marginal likelihood with,

p
(
∆S | Ŝ

)
≈ Ep(h(ξ))p(f(ζ))

[
(11)

N∏
t=1

K∑
k=1

Pr(αt = k | h(ξ))p(∆st+1 | fk(ζk))
]
,

where the conditional distributions p(∆st+1 | fk(ζk))
and Pr(αt = k | h(ξ)) follow from standard sparse GP
methodologies. See Eqs. (19) and (20) in App. A.1. Im-
portantly, the factorisation over observations is outside of
the marginalisation over the mode indicator variable, i.e.
the mode indicator variable can be marginalised for each
data point separately. This is not usually the case for
MoGPE methods. Our approximation assumes that the in-
ducing variables, {fk(ζk)}Kk=1, are a sufficient statistic for
their associated latent function values, {fk(Ŝk)}Kk=1 and
the set of assignments α. It becomes exact when each
mode’s inducing points represent the true data partition
{ζk, fk(ζk)}Kk=1 = {Ŝk, fk(Ŝk)}Kk=1.

Evidence lower bound (ELBO) Following a similar ap-
proach to Hensman et al., 2013, 2015, we lower bound
Eq. (11),

L({mk,Lk, m̂k, L̂k, ζk}Kk=1, ξ) =

N∑
t=1

Eq(h(ŝt))q(f(ζ))

[

log
K∑

k=1

Pr (αt = k | h(ŝt)) p(∆st+1 | fk(ζk))
]

−
K∑

k=1

KL (q(fk(ζk)) || p(fk(ζk)))

−
K∑

k=1

KL (q(hk(ξ)) || p(hk(ξ))) (12)

where the dynamic mode’s variational posterior is given
by q(f(ζ)) =

∏K
k=1 N

(
fk(ζk) | mk,LkL

T
k

)
and the gat-

ing network’s variational posterior is given by q(h(ŝt)) =∏K
k=1

∫
p(hk(ŝt) | hk(ξ))N

(
hk(ξ) | m̂k, L̂kL̂

T
k

)
dh(ξ).

Optimisation The bound in Eq. (12) induces a local fac-
torisation over observations and has a set of global vari-
ables – the necessary conditions to perform stochastic vari-
ational inference (SVI) (Hoffman et al., 2013) on q(f(ζ))

and q(h(ξ)), i.e. optimise {mk,Lk, m̂k, L̂k}Kk=1. We
treat the inducing inputs ξ, {ζk}Kk=1, kernel hyperparam-
eters and noise variances, as variational hyperparameters
and optimise them alongside the variational parameters, us-
ing Adam (Kingma and Ba, 2017). We use mini-batches
and approximate the expectations over the log-likelihood
using Monte Carlo samples.

Our approach can loosely be viewed as parameterising
the nonparametric model in Eq. (7) to obtain a desirable

factorisation for 1) constructing a GP-based gating net-
work and 2) deriving an ELBO that can be optimised with
stochastic gradient methods. Importantly, our approach
still captures the complex dependencies between the gat-
ing network and dynamic modes.

Predictions Given our variational approximation, we make
predictions at a new input ŝt with,

p(fk(ŝt) | ŝt,D0:i) ≈
∫

p(fk(ŝt) | fk(ζk))q(fk(ζk))dfk(ζk),

p(hk(st) | st,D0:i) ≈
∫

p(hk(st) | hk(ξ))q(hk(ξ))dhk(ξ).

See Eqs. (21) and (22) in App. A.1.

4.3 Planning

We now detail our planning algorithm which leverages the
latent structure of our dynamic model to:

1. Enforce the mode constraint with high probability,

2. Escape local optima induced by the mode constraint,
by targeting exploration where the agent has high epis-
temic uncertainty in its belief of the mode constraint.

Multi-step predictions with dynamic model Let us first
observe that if the controlled system satisfies the mode con-
straint, the system will be fully governed by the desired
dynamic mode fk∗ . We leverage this observation and sim-
plify making multi-step predictions by using only the de-
sired dynamic mode fk∗ . This enables us to approximate
the GP dynamics integration in closed form using moment
matching (Deisenroth and Rasmussen, 2011; Girard et al.,
2003; Kamthe and Deisenroth, 2018). See App. A.3 for
more details. This approximation has been shown to work
well in RL contexts (Cutler and How, 2015; Deisenroth
et al., 2015; Deisenroth and Rasmussen, 2011; Pan and
Theodorou, 2014; Pan et al., 2015).

Objective Given this approach for making multi-step pre-
dictions, we use Def. 3.3 to formulate a relaxed version of
the mode-constrained problem in Eq. (4),

argmax
π∈Π

Ep(fk∗ |D0:i) [J(π, fk∗)]︸ ︷︷ ︸
greedy exploitation

, (13a)

s.t. Pr(αt = k∗ | s0,a0:t,D0:i) ≥ 1− δ︸ ︷︷ ︸
δ-mode constraint

, ∀t. (13b)

The expectation is taken over the desired dynamic mode’s
fk∗ GP. Note that the expected objective in Eq. (13a),
which we refer to as greedy exploitation, is widely adopted.
For example, in PILCO (Deisenroth and Rasmussen,
2011), PETS (Chua et al., 2018) and GP-MPC (Kamthe
and Deisenroth, 2018). We calculate the δ-mode constraint
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Figure 2: Visualisation of four episodes i of ModeRL in the quadcopter navigation task from Fig. 7. The goal is to navigate to the
black star, whilst avoiding the turbulent dynamic mode (dashed red line). The contour plots indicate the agent’s belief of being in the
desired dynamic mode Pr(α = k∗ | s,D0:i) at each episode, i.e. after training on D0:i. The black lines show the δ-mode constraint (see
Eq. (13b)) expanding during training. At each episode i we roll out the policy in the desired dynamic mode’s GP (magenta) as well as
the in the environment (cyan). Experiments used an exponentially decaying schedule on δ to tighten the mode constraint during training.

in Eq. (13b) as,

Pr(αt = k∗ | s0,a0:t,D0:i) = (14)∫
Pr(αt = k∗ | h(st)) p(h(st) | s0,a0:t,D0:i)︸ ︷︷ ︸

gating posterior at t

dh(st),

where Pr(αt = k∗ | h(st)) resembles a classification like-
lihood (see App. A.2). We approximate the gating function
posterior predicted t steps into the future,

p(h(st) | s0,a0:t,D0:i)︸ ︷︷ ︸
gating posterior at t

=

∫
p (h(st) | st,D0:i)︸ ︷︷ ︸

gating posterior

p(st | s0,a0:t−1,D0:i)︸ ︷︷ ︸
dynamics posterior

dst, (15)

by propagating the state’s uncertainty using moment
matching (see App. A.3), where the state distribution
p(st | s0,a0:t−1,D0:i) is obtained by cascading single-
step predictions using moment matching (see App. A.3).
Importantly, the δ-mode constraint considers 1) both the
epistemic and aleatoric uncertainties in the desired dy-
namic mode and 2) the epistemic uncertainty in the gat-
ing network. This ensures that the controlled system is
δ-mode-constrained (Def. 3.3) under the uncertainty of the
learned dynamic model. Intuitively, it will remain where
the dynamic model’s uncertainty is low because the ex-
pectation results in lower probabilities for more uncertain
states.

Exploration In our experiments, the constraint in Eq. (13b)
hinders exploration and prevents the agent from solving the
task. This can be seen in the second from the left plot in
Fig. 3, where the mode constraint has induced a local opti-
mum and stopped the agent from reaching the target state.
We name the approach in Eq. (13) the greedy constrained
strategy. We propose to overcome the issue of local optima
induced by the mode constraint, by targeting exploration

where the agent has high epistemic uncertainty in the mode
constraint. We do this by augmenting our objective with an
intrinsic exploration term that encourages the agent to ex-
plore where its gating network is uncertain. We use the en-
tropy of the desired mode’s gating function hk∗ over a tra-
jectory s̄ = {s0, . . . , sT } as our intrinsic exploration term.
This leads to our strategy taking the form,

argmax
π∈Π

Ep(fk∗ |D0:i) [J(π, fk∗)]︸ ︷︷ ︸
greedy exploitation

+βH [hk∗(s̄) | s̄,D0:i]︸ ︷︷ ︸
exploration

(16a)

s.t. Pr (αt = k∗ | s0,a0:t,D0:i) ≥ 1− δ︸ ︷︷ ︸
δ-mode constraint

∀t. (16b)

where β is a hyperparameter that sets the level of explo-
ration. Intuitively, the entropy term should enable the agent
to escape local optima induced by the mode constraint as it
encourages the agent to explore away from regions of the
mode constraint that it has already observed. This is be-
cause the gating network’s epistemic uncertainty will be
low where it has observed the environment.

Epistemic vs aleatoric uncertainty When adopting this
approach, it is extremely important to disentangle the gat-
ing network’s epistemic uncertainty from its aleatoric un-
certainty. For example, what is the meaning of the agent’s
belief in the mode indicator variable tending to a uniform
distribution i.e. Pr(α = k | s,D0:i) = 1

K ? Does it mean
that the agent has not observed the environment near s
(high epistemic uncertainty), or that it has observed the en-
vironment near s but is still uncertain which mode governs
the dynamics (high aleatoric uncertainty)? We show the
importance of disentangling these sources of uncertainty in
our experiments. This motivated our GP-based gating net-
work in the MoGPE dynamic model, as it principally disen-
tangles the sources of uncertainty over α, by representing
the epistemic uncertainty in the gating network’s GPs.

Non-myopic exploration Further to providing a principled
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Figure 3: (Left) show trajectories found by the greedy exploitation strategy in Eq. (13), with and without the δ-mode constraint (black
line). (Right) shows trajectories found by our strategy in Eq. (16) when using our non-myopic exploration term H[hk∗(s̄) | s̄,D0],
compared to using the myopic exploration term 1

T

∑T
t=1 H[hk∗(st) | st,D0]. We overlay the trajectories on the GP posterior variance

associated with desired mode’s gating function V[hk∗(s) | s,D0] at episode i = 0.

approach for disentangling sources of uncertainty, our GP-
based gating network enables us to deploy a non-myopic
exploration strategy. That is, we are able to steer the agent
along a trajectory that will maximise uncertainty reduction
over the entire trajectory, by considering the joint entropy
over a trajectory H[hk∗(s̄) | s̄,D0]. In contrast, myopic
exploration considers uncertainty reduction of each state
independently without considering the influence of other
states in the trajectory, e.g. 1

T

∑T
t=0 H[hk∗(st) | st,D0].

Trajectory optimisation We use an open-loop trajectory
optimisation policy because it naturally handles the δ-mode
constraint in Eq. (16). Given a start state s0, ModeRL finds
the action sequence ā = {a0, . . . ,aT−1} solving the fol-
lowing optimal control problem,

argmax
a0,...,aT−1

Ep(fk∗ |D0:i) [J(π, fk∗)]︸ ︷︷ ︸
greedy exploitation

+β ln (|(2πe)Σk∗(s̄, s̄)|)︸ ︷︷ ︸
exploration

(17a)

s.t. Pr (αt = k∗ | s0,a0:t,D0:i) ≥ 1− δ︸ ︷︷ ︸
δ-mode constraint

∀t ∈ {0, . . . , T},

(17b)

where the greedy exploitation term is an expectation over
the state distribution obtained from making multi-step pre-
dictions in the desired dynamic mode’s GP using moment-
matching, see Eq. (32). Σ2

k∗(s̄, s̄) is the predictive covari-
ance of the desired mode’s gating function posterior over
the trajectory s̄, given in Eq. (25). It is worth noting a
closed-loop policy can be obtained using MPC. However,
this would require our algorithm to be made faster, for ex-
ample, via locally linear dynamics approximations. Alter-
natively, a closed-loop policy could be learned, for exam-
ple, via guided policy search (Levine and Koltun, 2013).

5 EXPERIMENTAL RESULTS

We test ModeRL on a 2D quadcopter navigation example,
where the goal is to navigate to a target state sf , whilst

avoiding a turbulent dynamic mode. See App. B for a
schematic of the environment and details of the problem.
Our experiments seek to answer the following questions:

1. Why does the greedy exploitation strategy in Eq. (13)
fail to solve the mode-constrained problem in Eq. (4)?

2. Does ModeRL, our strategy in Eq. (16), solve the
mode-constrained problem in Eq. (4)?

3. Is it important to disentangle the sources of uncer-
tainty in the mode constraint?

4. Does our non-myopic exploration strategy help?

5. How does the constraint level δ influence training?

To evaluate ModeRL, we compare against the greedy base-
line strategy in Eq. (13) (whose objective is used by PILCO
(Deisenroth and Rasmussen, 2011), PETS (Chua et al.,
2018), GP-MPC (Kamthe and Deisenroth, 2018)), both
with and without the δ-mode constraint in Eq. (13b). Our
experiments’ configurations are detailed in App. C.

Given the quadratic reward function in Eq. (33) our objec-
tive has closed form. Further to this, we use two dynamic
modes so our δ-mode constraint also has a closed form. At
each episode, we then solve,

argmax
a0,...,aT−1

−∥µMM
sT − sf∥H + Tr

(
HΣMM

sT

)︸ ︷︷ ︸
terminal state reward

−
T−1∑
t=0

(
∥µMM

st − sf∥Q − Tr
(
QΣMM

st

)︸ ︷︷ ︸
state difference reward

+ ∥at∥R︸ ︷︷ ︸
control reward

)
+ β ln

(
|(2πe)Σ2

k∗(s̄, s̄)|
)︸ ︷︷ ︸

joint gating entropy

(18a)

s.t. Φ

(
µk∗(st)√

1 +Σ2
k∗(st, st)

)
≥ 1− δ︸ ︷︷ ︸

δ-mode constraint

∀t ∈ {0, . . . , T}

(18b)
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Figure 4: Epistemic vs aleatoric uncertainty Illustration of the shortcomings of using the entropy of the mode indicator variable
(aleatoric uncertainty) for exploration. (Left) shows that the entropy of the mode indicator variable H[α | s,D0:10] (aleatoric uncer-
tainty) at a region of the mode boundary which has been observed (black crosses), is high (red), even though we have observed the
environment at these states. In contrast, (middle) shows that the entropy of the desired mode’s gating function H[hk∗(s) | s,D0:10]
(epistemic uncertainty) is low (white). (Right) visualises ModeRL converging to a local optimum when we replace the intrinsic explo-
ration term in Eq. (16) with the entropy of the mode indicator variable.

where µk∗(st) and Σ2
k∗(st, st) are the predictive mean and

covariance of the desired mode’s gating function posterior
at st, given in Eqs. (24) and (25). µMM

st and ΣMM
st are

the mean and covariance of the state predicted t steps into
the future p(st | s0,a0:t−1,D0:i), obtained by cascading
single-step predictions through the desired dynamic mode’s
GP with moment matching, given in Eq. (32). H and Q are
user-defined, real symmetric positive semi-definite weight
matrices and R is a user-defined, positive definite weight
matrix. We solve Eq. (18) using sequential least squares
quadratic programming (SLSQP) in SciPy (Virtanen et al.,
2020), using the TensorFlow (Abadi et al., 2015) wrapper
provided by GPflow (Matthews et al., 2017).

Why does greedy exploitation fail? Using the greedy
strategy without the mode constraint results in the optimi-
sation finding trajectories that leave the desired dynamic
mode. This is illustrated in Fig. 3 (left), which shows the
unconstrained greedy strategy converged to a solution nav-
igating straight to the target state. As a result, the trajectory
leaves the desired dynamic mode and passes through the
turbulent dynamic mode. This is expected as the strategy
is not aware of the turbulent dynamic mode. In contrast,
the constrained greedy strategy in Fig. 3 (second left), does
not leave the desired dynamic mode. However, the opti-
misation does not converge to the global optimum, i.e. the
trajectory does not navigate to the target state sf . Instead,
it gets stuck at the mode boundary, i.e. a local optimum.

Does our uncertainty-guided exploration work? The
failure of the greedy strategy motivated our nonparamet-
ric dynamic model which learns the δ-mode constraint –
as a latent variable – alongside the dynamic modes. Im-
portantly, this enabled ModeRL (in Eq. (16)), to adopt an
intrinsic exploration term, which targets exploration where
the mode constraint’s epistemic uncertainty is high. Fig. 2
shows four episodes i of ModeRL in the quadcopter navti-
gation task. Reading from left to right, the contours show
how the agent’s belief of being in the desired dynamic

mode Pr(α = k∗ | s,D0:i) changes as the agent in-
teracts with the environment, collects data D0:i and up-
dates its dynamic model, i.e. trains on D0:i. It shows the
δ-mode-constrained region (black line) expanding as the
agent trains on the new observations. The middle two plots
show that ModeRL escaped the local optimum induced by
the constraint. They also show that ModeRL provides some
level of constraint satisfaction during training. Finally, the
right-hand plot shows that ModeRL successfully navigated
to the target state, i.e. it solved the task.

Is it important to disentangle sources of uncertainty?
We now evaluate the importance of disentangling the
sources of uncertainty in the mode constraint. In the left
plot of Fig. 4 we visualise the entropy of the mode indicator
variable H[α | s,D0:10] (aleatoric uncertainty) at a region
of the mode boundary that the agent has observed (black
crosses). The entropy is high (red) even though we have ob-
served the environment at these states. As such, the agent
would keep exploring the mode boundary even though it
has been observed. In contrast, the middle plot shows
the entropy of the gating function H[hk∗(s) | s,D0:10].
The entropy is low (white) around the observations (black
crosses), indicating that our GPs are capturing the mode
constraint’s epistemic uncertainty. The entropy of the de-
sired mode’s gating function (Fig. 4 middle) is a much bet-
ter objective for exploration because it encourages the ex-
ploration away from the mode boundary once it has been
observed. The right plot of Fig. 4 shows results when using
the entropy of the mode indicator variable for the intrin-
sic exploration term. It shows that the agent is not able to
escape the local optimum induced by the mode constraint.

Non-myopic vs myopic exploration? We now test the
importance of our non-myopic exploration term, i.e. us-
ing the joint entropy of the desired mode’s gating func-
tion over a trajectory H[hk∗(s̄) | s̄,D0], instead of tak-
ing the mean of the gating function’s entropy at each time
step 1

T

∑T
t=0 H [hk∗(st) | st,D0:i]. In the right plots of
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Figure 5: Constraint level ablation Training curves for differ-
ent constraint levels δ. They show that looser constraints (high δ)
have better sample efficiency. They further show that if the con-
straint is too tight (i.e. δ ≤ 0.2) then ModeRL gets stuck in local
optima and cannot solve the task. Curves show the mean and 95%
confidence interval of the episode return for five random seeds, at
each episode i of training. The δs0 = 4 experiment used an expo-
nential schedule to tighten the constraint during training.

Fig. 3, we overlay the trajectories found with the non-
myopic and myopic exploration terms, over the GP pos-
terior variance associated with desired mode’s gating func-
tion V[hk∗(s) | s,D0] at episode i = 0. The right-hand
plot of Fig. 3 shows that using the myopic exploration term
results in the trajectory navigating to a single state of high
entropy and remaining in that state for the rest of the tra-
jectory. This is an undesirable behaviour. In contrast, the
second from right plot in Fig. 3 shows our non-myopic ex-
ploration term H[hk∗(s̄) | s̄,D0] spreading out. This is a
desirable behaviour because it reduces the number of envi-
ronment interactions that are required to solve the task, i.e.
it improves sample efficiency.

Constraint satisfaction during training Finally, we eval-
uate how the constraint level δ influences training. Fig. 8
confirms that tightening the constraint (i.e. decreasing δ)
leads to less constraint violations. This is shown by the
accumulated number of episodes with constraint violations
Nα

i increasing more slowly for lower δ’s. Fig. 5 shows the
training curves for five constraint levels δ. It shows that
relaxing the constraint results in higher sample efficiency.
This is indicated by the training curves for lower δ’s con-
verging in fewer episodes, e.g. δ = 0.5 (blue). Fig. 5 fur-
ther shows that ModeRL is not able to solve the task when
the constraint is too tight, e.g. δ ≤ 0.2 (red/purple). This is
indicated by the asymptotic performance not matching that
of lower δ’s. Finally, we place an exponentially decaying
schedule on δ (δs0 brown), which tightens the constraint dur-
ing training. This strategy solved the task in fewer episodes
than the fixed δ experiments, indicating that it is more sam-
ple efficient. It also resulted in fewer constraint violations
both during and after training.

5.1 Practical Considerations

Warm start trajectory optimisation In practice, the con-
strained optimisation in Eq. (16) fails if the initial trajectory
does not satisfy the δ-mode constraint. We overcome this
by solving an unconstrained optimisation to a “fake” target
state in the initial state domain S0 and using it to warm start
our trajectory optimiser.

Fixing model parameters during training Initially, Mod-
eRL explores the desired dynamic mode and does not ob-
serve any state transitions from other modes. As such, we
fix the kernel hyperparameters (e.g. lengthscale and signal
variance) associated with the gating network GP. This pre-
vents the δ-mode-constrained region from expanding sig-
nificantly further than the observed data.

Inducing points We initialise each of the sparse GPs with
a fixed number of inducing points uniformly sampled from
D0. Although this approach worked well in our experi-
ments, it is unlikely to scale to larger problems. As such,
an interesting direction for future work is to study methods
for dynamically adding new inducing points to each GP.

6 CONCLUSION

We introduced ModeRL, a Bayesian model-based RL al-
gorithm for low-dimensional continuous control problems,
that constrains exploration to a single dynamic mode (up
to a given probability). Intuitively, ModeRL relaxes the
mode-constrained RL problem in Def. 3.2, making it fea-
sible, whilst still providing “some level” of constraint sat-
isfaction during training. It uses a nonparametric dynamic
model to learn the mode constraint – as a latent variable –
alongside the dynamic modes. Importantly, it disentangles
the sources of uncertainty in the learned mode constraint.
Our experiments show that our nonparametric formulation
of the mode constraint is essential for solving the quad-
copter navigation task, as it enabled our planning algorithm
to escape local optima that other strategies could not.

Limitations The main limitation of ModeRL is that it is re-
stricted to lower dimensional problems, due to the difficul-
ties of defining GP priors in high dimensions. Another (po-
tentially unavoidable) downside of ModeRL, is that it must
leave the desired dynamic mode in order to learn about the
mode constraint. This is because we used internal sensing.
However, in some applications, it may be possible to infer
the mode constraint using external sensors. For example,
in autonomous driving, it may be possible to infer dynamic
modes associated with different road surfaces without leav-
ing the desired dynamic mode, by using cameras. Finally,
ModeRL uses an open-loop policy. An interesting direc-
tion for future work is to make our algorithm faster so that
it can be used to formulate a closed-loop policy via MPC.
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A DYNAMIC MODEL

This section provides details of our nonparametric dynamic model, including the sparse GP approximations it is built upon,
our GP-based gating network, and how we propagate uncertainty when making multi-step predictions.

A.1 Sparse Gaussian Processes

Each dynamic mode’s predictions conditioned on its inducing variables follows from the properties of multivariate normals
and are given by,

p(∆st+1 | fk(ζk)) = Ep(fk(ŝt)|fk(ζk)) [p(∆st+1 | fk(ŝt))] (19a)

p(fk(ŝt) | fk(ζk)) = N
(
fk(ŝt) | kk(ŝt, ξ)kk(ξ, ξ)−1fk(ζk), kk(ŝt, ŝt)− kk(ŝt, ξ)kk(ξ, ξ)

−1kk(ξ, ŝt)
)
, (19b)

Similarly for the gating network we have,

Pr(αt = k | h(ξ)) = Ep(h(ŝt)|h(ξ)) [Pr (αt = k | h(ŝt))] (20a)

p(h(ŝt) | h(ξ)) =
K∏

k=1

N
(
hk(ŝt) | k̂k(ŝt, ξ)k̂k(ξ, ξ)−1hk(ξ), k̂k(ŝt, ŝt)− k̂k(ŝt, ξ)k̂k(ξ, ξ)

−1k̂k(ξ, ŝt)
)
, (20b)

Predictive posteriors As each GP’s inducing variables are normally distributed, the functional form of their predictive
posteriors are given by,

p(fk(ŝt) | ŝt,D0:i) ≈
∫

p(fk(ŝt) | fk(ζk))q(fk(ζk))dfk(ζk) = N
(
fk(ŝt) | Akmk, kk(ŝt, ŝt) +Ak(Sk − kk(ξ, ξ))A

T
k

)
(21)

p(h(st) | st,D0:i) ≈
K∏

k=1

q(hk(ξ)) =

K∏
k=1

N
(
hk(ŝt) | Âkm̂k, k̂k(ŝt, ŝt) + Âk(Ŝk − k̂k(ξ, ξ))Â

T
k

)
, (22)

where Ak = kk(ŝt, ξ)kk(ξ, ξ)
−1 and Âk = k̂k(ŝt, ξ)k̂k(ξ, ξ)

−1. Importantly, our predictive posteriors marginalise the
inducing variables in closed form, with Gaussian convolutions.

Given our GP-based gating network, we are able to model the joint distribution over the gating function values hk∗(s̄)
along a trajectory s̄ with,

p(hk∗(s̄) | s̄,D0:i) ≈ q(hk∗(s̄)) = N
(
hk∗(s̄) | µk∗(s̄),Σ2

k∗(s̄, s̄)
)

(23)

where µk∗(·) and Σ2
k∗(·, ·) are sparse GP mean and covariance functions, given by,

µk∗(s̄) = k̂k∗(s̄, ξ)k̂k∗(ξ, ξ)−1m̂k∗ (24)

Σ2
k∗(s̄, s̄) = k̂k∗(s̄, s̄) + k̂k∗(s̄, ξ)k̂k∗(ξ, ξ)−1

(
Ŝk∗ − k̂k∗(ξ, ξ)

)
k̂k∗(ξ, ξ)−1k̂k∗(ξ, s̄), (25)

where k̂k∗ and ξ are the kernel and inducing inputs associated with the desired mode’s gating function respectively. This
sparse approximation arises because our dynamical model uses sparse GPs and approximates the posterior with,

q(hk∗(s̄)) =

∫
p(hk∗(s̄) | hk∗(ξ))q(hk∗(ξ))dhk∗(ξ), (26)

where q(hk∗(ξ)) = N
(
hk∗(ξ | m̂k∗ , Ŝk∗

)
.

A.2 Gating Network

Bernoulli (K = 2) Instantiating the model with two dynamic modes, αt ∈ {1, 2}, is a special case where only a single
gating function is needed. This is because the output of a function h(ŝt) can be mapped through a sigmoid function
sig : R → [0, 1] and interpreted as a probability,

Pr(αt = 1 | h(ŝt)) = sig(h(ŝt)). (27)
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Figure 6: Graphical model of our augmented dynamic model where each state difference output ∆st+1 is generated by mapping the
state-action input ŝt through the latent processes. The dynamic modes are shown on the left and the gating network on the right. The
generative processes involve evaluating the gating network and sampling a mode indicator variable αt. The indicated mode’s latent
function fk and noise model N (0, σ2

k) are then evaluated to generate the output ∆st+1.

If this sigmoid function satisfies the point symmetry condition then the following holds, Pr(αt = 2 | h(ŝt)) = 1−Pr(αt =
1 | h(ŝt)). This only requires a single gating function and no normalisation term needs to be calculated. If the sigmoid
function in Eq. (27) is selected to be the Gaussian cumulative distribution function Φ(h(·)) =

∫ h(·)
−∞ N (τ |0, 1)dτ , then the

mode probability can be calculated in closed form,

Pr(αt = 1 | ŝt) =
∫

Φ (h(ŝt))N
(
h(ŝt) | µh, σ

2
h

)
dh(ŝt)

= Φ

(
µh√
1 + σ2

h

)
, (28)

where µh and σ2
h represent the mean and variance of the gating GP at ŝt respectively.

Softmax (K > 2) In the general case, when there are more than two dynamic modes, the gating network’s likelihood is
defined as the Softmax function,

Pr (αt = k | h(ŝt)) = softmaxk (h(ŝt)) =
exp (hk(ŝt))∑K
j=1 exp (hj(ŝt))

. (29)

Each mode’s mode probability Pr(αt = k | ŝt) is then obtained by marginalising all of the gating functions. In the general
case where Pr (αt = k | h(ŝt)) uses the softmax function in Eq. (29), this integral is intractable, so we approximate it with
Monte Carlo quadrature.

A.3 Uncertainty Propagation: Moment Matching

To obtain the state distributions p(s1 | s0,a0,D0:i), . . . , p(sT | s0,a0:T−1,D0:i), for a given set of actions a0, . . . ,aT−1,
we cascade single-step predictions through the desired dynamic mode’s GP using moment matching, (Deisenroth and
Rasmussen, 2011; Girard et al., 2003; Kamthe and Deisenroth, 2018; Quiñonero-Candela and Rasmussen, 2005). That is,
we iteratively calculate,

p(st+1 | s0,a0:t,D0:i) =

∫ ∫
p(st+1 | fk∗(ŝt))︸ ︷︷ ︸

Gaussian likelihood

p(fk∗(ŝt) | ŝt,D0:i)︸ ︷︷ ︸
dynamics posterior

p(st | s0,a0:t−1,D0:i)dfk∗(ŝt)dst, (30)

with p(s0) = δ(s0). Importantly, the moment-matching approximation allows us to formulate uncertainty propagation
using a deterministic system function,

zt+1 = fMM
k∗ (zt,at), zt = [µMM

st ,ΣMM
st ], (31)

where µMM
st and ΣMM

st are the mean and covariance of p(st | s0,a0:t−1,D0:i). As we use deterministic actions we define
the deterministic system function as

zt+1 = fMM
k∗ (ẑt), ẑt = [µMM

ŝt ,ΣMM
ŝt ], µMM

ŝt = [µMM
st ,at], ΣMM

ŝt = blkdiag[ΣMM
st ,0]. (32)
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Figure 7: Mode-constrained quadcopter navigation - Diagram showing a top-down view of a quadcopter subject to two dynamic
modes: 1) an operable dynamic mode (blue) and 2) an inoperable, turbulent dynamic mode induced by a strong wind field (red). The
goal is to navigate to the target state sf (white star), whilst avoiding the turbulent dynamic mode (red).

B ILLUSTRATIVE EXAMPLE

ModeRL is tested on a 2D quadcopter navigation example shown in Fig. 7. The goal is to fly the quadcopter from an initial
state s0, to a target state sf (white star). However, it considers a quadcopter operating in an environment subject to spatially
varying wind – induced by a fan – where two dynamic modes can represent the system,

Mode 1 is an operable dynamic mode away from the fan,

Mode 2 is an inoperable, turbulent dynamic mode in front of the fan.

The turbulent dynamic mode is subject to higher drift (in the negative x direction) and to higher diffusion (transition noise).
It is hard to know the exact turbulent dynamics due to complex and uncertain interactions between the quadcopter and the
wind field. Further to this, controlling the system in the turbulent dynamic mode may be infeasible. This is because the
unpredictability of the turbulence may cause catastrophic failure. Therefore, when flying the quadcopter to the target state
sf , it is desirable to find trajectories that avoid entering this turbulent dynamic mode.

The state-space of the velocity-controlled quadcopter example consists of the 2D Cartesian coordinates s = (x, y) and the
controls consist of the speed in each direction, given by a = (vx, vy).

The reward function is given by,

r(s̄, ā) = − (sT − sf )
T
H (sT − sf )−

T−1∑
t=0

(
(st − sf )

T
Q (st − sf ) + aTt Rat

)
(33)

= −∥sT − sf∥H −
T−1∑
t=0

(
∥st − sf∥Q + ∥at∥R

)
(34)

where H and Q are user-defined, real symmetric positive semi-definite weight matrices and R is a user-defined, positive
definite weight matrix. In our experiments we set both Q and R to be the identify matrix I and H to be 100I.

C EXPERIMENT CONFIGURATION

This section details how the experiments were configured.

Initial data set D0 The initial data set was collected by simulating 50 random trajectories with horizon T = 15 from the
start state s0 = {x0, y0} and terminating them when they left the initial state domain S0 = {s ∈ S | x0 − 1 < x <
x0 + 1, y0 − 1 < y < y0 + 1}.

Model learning In all experiments, the dynamic model was instantiated with K = 2 modes. Each dynamic mode’s
GP used a separate RBF kernel with automatic relevance determination (ARD) for each output dimension d but shared
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its inducing variables for each output dimension d. Further to this, each dynamic mode learned a separate constant mean
function cfk and separate noise variances for each output dimension. The gating network used a single gating function with
an RBF kernel with ARD and a zero mean function. An early stopping callback was used to terminate the dynamic model’s
training. The early stopping callback used a min delta of 0 and a patience of 50. This meant that training terminated after
50 epochs of no improvement. All of the dynamic model’s initial parameters are shown in Tab. 1. We also fix the kernel
hyperparameters (e.g. lengthscale and signal variance) associated with the gating network, along with the noise variance
in the non-desired (turbulent) dynamic mode.

Policy In all experiments, ModeRL used a horizon of T = 15 and was configured with δ = 0.3. At each episode, ModeRL
uses the previous solution as the initial solution for the trajectory optimiser.

Intrinsic schedule In our experiments, we used an exponential decay schedule (with decay rate 0.96 and decay steps 10)
on the exploration weight β.

Table 1: Experiment configuration and parameter settings.

DESCRIPTION SYMBOL VALUE
Start state s0 [2.0,−2.5]

Environment Target state sf [1.2, 3.0]
Terminal state reward weight H diag([100, 100])
State reward weight Q diag([1, 1])
Control reward weight R diag([1, 1])
Constraint level δ 0.3

Policy π Horizon T 15
Exploration weight (initial) β0 10.0
Batch size Nb 64
Num epochs N/A 20000

Dynamics optimiser Num gating samples N/A 1
Num expert samples N/A 1
Learning rate N/A 0.01
Epsilon N/A 1× 10−8

Constant mean function cf1 [0, 0]
Kernel variance (d = 1) σ2

f1
1

Kernel lengthscales (d = 1) lf1 [1, 1, 1, 1]
Dynamic mode 1 f1 Kernel variance (d = 2) σ2

f1
1

Kernel lengthscales (d = 2) lf1 [1, 1, 1, 1]
Likelihood variance σ2

1 diag([1, 1])
Num inducing points Mf1 50

Inducing inputs ζ1 ζ1 ⊆ Ŝ0 with #ζ1 = M
Constant mean function cf2 [0, 0]
Kernel variance (d = 1) σ2

f2
1

Kernel lengthscales (d = 1) lf2 [1, 1, 1, 1]
Dynamic mode 2 f2 Kernel variance (d = 2) σ2

f2
1

Kernel lengthscales (d = 2) lf2 [1, 1, 1, 1]
Likelihood variance σ2

2 diag([1, 1])
Num inducing points Mf2 50

Inducing inputs ζ2 ζ2 ⊆ Ŝ0 with #ζ2 = M
Kernel variance σ2

h1
1

Kernel lengthscales lh1
[0.8, 0.8]

Gating function 1 h1 Active dims N/A [0, 1]
Num inducing points Mh1

90

Inducing inputs ξ ξ ⊆ Ŝ0 with #ξ = Mh
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D FURTHER EXPERIMENTS
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Figure 8: Constraint level ablation Accumulated number of constraint violations at each episode i of training, for different constraint
levels δ. It shows that tighter constraints (i.e. lower δ) result in less constraint violations during training. Lines show the mean and 95%
confidence interval of the accumulated number of constraint violations for five random seeds, at each episode i of training. The δs0 = 4
experiment used an exponential schedule to tighten the constraint during training.
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