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Abstract—Mixture models are inherently unidentifiable as
different combinations of component distributions and mixture
weights can generate the same distributions over the observations.
We propose a scalable Mixture of Experts model where both
the experts and gating functions are modelled using Gaussian
processes. Importantly, this balanced treatment of the experts
and the gating network introduces an interplay between the
different parts of the model. This can be used to constrain
the set of admissible functions reducing the identifiability issues
normally associated with mixture models. The model resembles
the original Mixture of Gaussian Process Experts method with
a GP-based gating network. However, we derive a variational
inference scheme that allows for stochastic updates enabling the
model to be used in a more scalable fashion.

I. INTRODUCTION

Given an input xn and an output yn, mixture mod-
els model a mixture of distributions over the output
p(yn|xn) =

∑K
k=1 Pr(αn = k)p(yn|αn = k,xn). The predic-

tive distribution p(yn|xn) consists of K mixture components
p(yn|αn = k,xn) that are weighted according to the mixing
probabilities Pr(αn = k). Mixture models are inherently
unidentifiable as different combinations of mixture compo-
nents and mixing probabilities can generate the same distribu-
tions over the output. The mixture of experts (ME) model is an
extension where the mixing probabilities depend on the input
variable Pr(αn = k | xn) [3]. These are referred to as gating
functions and collectively the gating network. The individual
component densities p(yn | αn = k,xn) are then referred to
as experts, as at different regions in the input space, different
components are responsible for predicting. Given a set of
observations D = {(xn, yn)}Nn=1 with inputs X ∈ RN×D

and outputs y ∈ RN , the ME marginal likelihood is given by,

p (y | X) =

N∏
n=1

K∑
k=1

Pr (αn = k | xn)︸ ︷︷ ︸
Mixing Probability

p (yn | αn = k,xn)︸ ︷︷ ︸
Expert

(1)

where αn ∈ {1, . . . ,K} is the expert indicator variable
assigning the nth observation to an expert.

Modelling the experts as Gaussian processes (GPs) gives
rise to a class of powerful models known as Mixtures of Gaus-
sian Process Experts (MoGPE). Under the standard Gaussian
likelihood model, each expert is given by,

yn = fk(xn) + εk, εk ∼ N (0, σ2
k) (2)

p(yn | αn = k, fk(xn)) = N
(
yn | fk(xn), σ

2
k

)
(3)

Aidan Scannell is a PhD student at the EPSRC Centre for Doctoral Training
in Future Autonomous and Robotic Systems (FARSCOPE CDT).

where fk and σ2
k represent the latent function and the noise

variance associated with the kth expert. Placing independent
GP priors on each of the expert’s latent functions,

p (fk(X)) = N (fk(X) | µk(X), kk(X,X)) (4)

where µk(·) and kk(·, ·) represent the mean and covariance
functions associated with the kth expert respectively, leads to
each expert resembling a standard GP regression model. Note
that the dependence on the inputs X and hyperparameters θk
has been dropped for notational conciseness.

The gating network can be seen as a handle for encoding
prior knowledge that can be used to constrain the set of
admissible functions. This can improve identifiability and lead
to learned representations that better reflect our understanding
of the system. The simplest case being reordering the experts.

In the remainder of this paper we will formulate the MoGPE
model with a GP-based gating network. After observing its
poor computational complexity, we will augment the proba-
bility space with a set of psuedo-training observations (a.k.a
inducing points) and use them to derive a variational lower
bound, that can be optimised with stochastic gradient methods.

II. GAUSSIAN PROCESS GATING NETWORK

Motivated by identifiablility, this work adopts a GP-based
gating network as seen in the original MoGPE [6] model. The
gating network resembles a Gaussian process classification
model, i.e. it places independent GP priors on each of the
gating functions and normalises their output to obtain a
Categorical distribution over the mode indicator variable. The
probabilities of this Categorical distribution Pr(α = k | h(·))
are obtained by evaluating K latent gating functions h(·) =
{hk(·)}Kk=1 and normalising their output. In the general case,
the gating network uses the softmax function,

Pr (α = k | h(·)) = softmaxk (h(·)) =
exp (hk(·))∑K
k=1 exp (hk(·))

.

Each gating function hk(·) describes how its corresponding
expert’s mixing probability varies over the input space. We
then place independent GP priors on each gating function,
giving the distribution over all gating functions as,

p (h(X)) =

K∏
k=1

p(hk(X)) =

K∏
k=1

N
(
hk(X) | µ̂k(X), k̂k(X,X)

)
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Fig. 1. Graphical models showing a) the joint probability model and b) the approximate joint probability model after augmenting the probability space with
pseudo observations. The K latent gating functions hk are evaluated and normalised to obtain the mixing probabilities Pr(αn = k | xn). The expert indicator
variable αn is then sampled from a Categorical distribution governed by these probabilities. The indicated expert’s latent function fk and Gaussian likelihood
σ(k) are then evaluated to generate the output yn.

where µ̂k(·) and k̂k(·, ·) are the mean and covariance functions
associated with the kth gating function. With this formulation,
the marginal likelihood can be rewritten as,

p (y | X) =

K∑
k=1

(
Ep(h(X))

[
Pr
(
{αn = k}Kk=1 | h(X)

)]
︸ ︷︷ ︸

Mixing Probabilities

Ep(fk(X)) [p (y | fk (X))]︸ ︷︷ ︸
GP Expert

)
(5)

which is the original MoGPE model proposed by [6]. Observe
that the GP priors have removed the factorisation over data
which is present in the ME marginal likelihood (Eq. 1). Fig.
1a shows the associated graphical model.

III. INFERENCE

The marginal likelihood in Eq. 5 is extremely expensive
to evaluate O(KN4) and is also intractable due to the
marginalisation of h in the gating network. This work focuses
on inducing point methods [4], where the latent variables
are augmented with inducing input-output pairs known as
inducing “inputs” Z, and inducing “variables” u = f(Z).
Following the approach by [5], we introduce a set of M
inducing points for each of the experts p(uk | Zk) =
N (uk | µk(Zk), kk(Zk,Zk)) and each of the gating functions
p(ûk | Ẑk) = N (ûk | µ̂k(Ẑk), k̂k(Ẑk, Ẑk)). However, instead
of collapsing these inducing variables, we follow [1, 2] and
explicitly represent them as variational distributions,

q (fn) :=

K∏
k=1

q (fk(xn)) =

K∏
k=1

∫
p (fk(xn) | uk) q (uk) duk

q (hn) :=

K∏
k=1

q (hk(xn)) =

K∏
k=1

∫
p (hk(xn) | ûk) q (ûk) dûk,

and use them to lower bound the marginal likelihood. Note
that q (uk) and q (ûk) are given by q (uk) = N (uk |mk,Sk)

and q (ûk) = N
(
ûk | m̂k, Ŝk

)
, and {mk, m̂k,SkŜk}Kk=1

are treated as variational parameters. Given our variational
posterior, we lower bound the marginal likelihood,

L =
N∑

n=1

Eq(fn,hn)

[
log

K∑
k=1

Pr(αn = k | hn)p(yn | αn = k, fk(xn))

]

−
K∑

k=1

KL [q(uk) || p(uk|Zk)]−
K∑

k=1

KL
[
q(ûk) || p(ûk|Ẑk)

]
(6)

This bound meets the necessary conditions to perform stochas-
tic gradient methods on {q (uk) , q (ûk)}Kk=1 as the sum of N
terms corresponds to input-output pairs. The inducing inputs
{Zk, Ẑk}Kk=1, kernel hyperparameters {θk, φk}Kk=1 and noise
variances {σk}Kk=1 are treated as variational hyperparameters
and are optimised using stochastic gradient descent alongside
the variational parameters. The expectation in Eq. 6 is in-
tractable so we approximate it by drawing single samples from
q (fn) and q (hn).

Note that our augmented model captures the dependencies
in the joint distribution of the data through the inducing vari-
ables, but as M � N these have a much lower computational
burden. Given a batch of Nb observations our bound has
complexity O

(
NbKM

3
)
.

IV. CONCLUSION

This paper presents a novel variational inference scheme
that improves the scalability of the Mixture of Gaussian
Process Experts model with a GP-based gating network. The
GP-based gating network can be used to constrain the set
of admissible functions through the placement of informative
GP priors on the gating functions. This aids the inherent
identifiability issues associated with mixture models. Our
variational lower bound principally handles uncertainty and
provides scalability as it can be optimised with stochastic gra-
dient methods. The proposed lower bound provides a coupling
between the optimisation of the experts and the gating network
by efficiently marginalising the expert indicator variable.
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