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SFR: Sparse Function-space 
Representation
Combines benefits of neural networks and Gaussian processes
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• ⚠ GP predictive posterior is computationally expensive

• We sparsify the GP using a dual parameterization 

SFR: Sparse Function-space Representation
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.
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SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.
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Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
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density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
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classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.
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report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.
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show the performances of SFR on image
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particular, we report the results obtained us-
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et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
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and Laplace approximation when using
both BNN and GLM predictions. This
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information from all data points even when
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SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.
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LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)
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IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01
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NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF
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-1
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NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01
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NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
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NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01
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NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF
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NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01
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NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.

7

Lo
w

er
 is

 b
et

te
r

Published as a conference paper at ICLR 2024

2 4 6

0.
8

1
1.
2

1.
4

1.
6

M as % of N

N
LP

D
CIFAR-10

0 2 4 6

0.
5

1
1.
5

2
M as % of N

FMNIST

0 20 40 60 80 100

1
1.
5

M as % of N

GLASS

0 20 40 60 80 100

0.
5

1

M as % of N

VEHICLE

0 20 40 60 80 100

0.
4

0.
6

0.
8

1

M as % of N

WAVEFORM

0 20 40 60 80 100

0.
5

1
1.
5

2

M as % of N

SATELLITE

Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF
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-1
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NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF
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R

-1
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NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01
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IF
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NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Continual Learning
SFR maintains a functional representation for continual learning
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Function-space Parameterization of Neural Networks for Sequential Learning
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TL;DR

Neural networks (NNs) have limitations: estimating uncertainty,
incorporating new data, and avoiding catastrophic forgetting.
Our method, Sparse Function-space Representation (SFR):

converts NN to sparse Gaussian process (GP) via dual parameters,
gives good uncertainty estimates,
can incorporate new data without retraining,
can maintain a functional representation for continual learning,
can be used for uncertainty-guided exploration in model-based RL.

1. Train Neural Network

Inputs: NN fw(·), data D = {(xi, yi)}N
i=1

Outputs: Maximum A-Posteriori (MAP) weights

wú = arg minw L(D, w) =
NX

i=1
¸(fw(xi), yi)| {z }
≠ log p(yi | fw(xi))

+ R(w)
| {z }

≠ log p(w)
w1

w
2

Weight Space

2. From NN to Function-space Laplace

(1) Linerised NN fwú(x) ¥ Òwfwú(x)€w æ function space formulation:

p(f) = N (f | 0, Ÿ(X, X)) with Ÿ(x, xÕ) = 1
”

Òwfwú(x)€ Òwfwú(x)

(2) Convert training objective to function space,
L(D, w) = ≠ PN

i=1 log p(yi | fi) ≠ log p(f).
(3) Function-space Laplace approximation:

p(f | D) ¥ q(f) = N (f | mf , Sf)
⚠️ GP predictive posterior is computational prohibitive f1

f 2

Function Space

Sparse Function-space Representation (SFR)

Sample inducing inputs Z ™ X from training inputs X .
SFR predictive posterior:

Eq(fi)[fi] ¥ kT
ziK

≠1
zz –u and

Varq(fi)[fi] ¥ kii ≠ k€
zi[K≠1

zz ≠ (Kzz + Bu)≠1]kzi (1)
with sparse dual parameters,

–u = PN
i=1 kzi –̂i and Bu =

NX

i=1
kzi —̂i kT

zi (2)

–̂i := Òf log p(yi | f )|f=fi and —̂i := ≠Ò2
ff log p(yi | fi)|f=fi (3)

Incorporating new data Dnew with dual parameters is easy,
–u Ω –u + P

xi,yiœDnew kzi –̂i
| {z }

update

and Bu Ω Bu + P
xi,yiœDnew kzi —̂i kT

zi| {z }
update
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Figure 1: Regression example on an MLP with two hidden layers. Left: Predictions from the
trained neural network. Middle: Our approach summarizes all the training data with the help of a
set of inducing points. The model captures the predictive mean and uncertainty, and (right) makes it
possible to incorporate new data without retraining the model.

SFR NEW DATA

subsets of training data [27], this parameterization allows capturing the contributions from all data37

points into a sparse representation, essential for predictive uncertainty. Crucially, the resulting GP38

directly predicts in the same space as the original trained neural network, with the benefit of avoiding39

the complexity introduced by working in weight-space and the notorious cubic complexity of vanilla40

GPs. Through the dual parameter formulation, we establish a connection between the neural network,41

full GPs, and a sparse approximation similar to sparse variational GPs [67]. We refer to our method42

as Sparse Function-space Representation (SFR)—a sparse GP derived from a trained neural network.43

Moreover, this dual parameterization can be exploited to perform dual conditioning [8], i.e., an44

effective approach for conditioning on new data without needing to retrain the model (see Fig. 1).45

The contributions of this paper are as follows: (i) We introduce SFR, a new approach for building a46

sparse functional representation of a neural network. (ii) We demonstrate that, despite its sparsity,47

our method effectively captures predictive uncertainty, provides a means of updating the model post-48

training, and gives a compact regularizer suitable for continual learning. (iii) We provide extensive49

experiments for showcasing our approach and demonstrate significance and applicability across50

supervised, continual, and reinforcement learning, aiming to stimulate future use of the approach.51

1.1 Related work52

Bayesian deep learning Probabilistic methods in deep learning [74, 49] have recently gained53

increasing attention in the machine learning community as a means for uncertainty quantification54

(e.g., [32, 75]) and model selection (e.g., [27, 2]) with advancements in prior specification (e.g.,55

[9, 45, 46, 20, 48]) and efficient approximate inference under the specified model. Calculating the56

posterior distribution of a Bayesian neural network is usually intractable, and approximate inference57

techniques need to be used, such as variational inference [4], deep ensembles [39], MC dropout [21],58

or Laplace approximation [61, 38, 28]—each with its own set of strengths and weaknesses.59

Function-space methods Function-space perspectives on uncertainty in neural networks often use60

a Laplace-GGN approximation [14], which linearizes a trained neural network around MAP weights61

and approximates the neural network’s Hessian using the generalized Gauss–Newton approximation62

(GGN, [5]). While efficient, the GNN suffers from cubic scaling in parameter count, necessitating63

approximations like Kronecker factorisation [43, 61]. This linear model (with respect to the weights)64

refines predictions and provides uncertainty estimates [27]. It has a convenient interpretation as a GP65

[27, 34, 42]. However, the GP’s cubic O(N3) scaling with data points N requires costly approxima-66

tions, often resorting to using data subsets [27]. In the GP community, sparse approximations have67

mitigated this scaling issue (e.g., [67, 25]), but combining neural network linearization with sparse68

GP methods remains underexplored. Recent work has explored converting NNs to sparse variational69

GPs [52], however, their method requires separately retraining a GP model. Our work addresses this70

by utilizing the GP’s dual parameters [12], previously applied to non-conjugate likelihood models [1].71
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neural network. Middle: Our approach sum-
marizes all the training data with the help of
a set of inducing points. The model cap-
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new data without retraining the model.
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F POSTER TABLE

Method S-MNIST (SH)
40 pts./task

S-MNIST (SH)
200 pts./task

S-FMNIST (SH)
200 pts./task

P-MNIST (SH)
200 pts./task

DER 85.26±0.54 92.13±0.45 82.03±0.57 93.08±0.11

FROMP 75.21±2.05 89.54±0.72 78.83±0.46 94.90±0.04

S-FSVI 84.51±1.30 92.87±0.14 77.54±0.40 95.76±0.02
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TL;DR

Neural networks (NNs) have limitations: estimating uncertainty,
incorporating new data, and avoiding catastrophic forgetting.
Our method, Sparse Function-space Representation (SFR):

converts NN to sparse Gaussian process (GP) via dual parameters,
gives good uncertainty estimates,
can incorporate new data without retraining,
can maintain a functional representation for continual learning,
can be used for uncertainty-guided exploration in model-based RL.
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⚠️ GP predictive posterior is computational prohibitive f1

f 2
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Figure 1: Regression example on an MLP with two hidden layers. Left: Predictions from the
trained neural network. Middle: Our approach summarizes all the training data with the help of a
set of inducing points. The model captures the predictive mean and uncertainty, and (right) makes it
possible to incorporate new data without retraining the model.

SFR NEW DATA

subsets of training data [27], this parameterization allows capturing the contributions from all data37

points into a sparse representation, essential for predictive uncertainty. Crucially, the resulting GP38

directly predicts in the same space as the original trained neural network, with the benefit of avoiding39

the complexity introduced by working in weight-space and the notorious cubic complexity of vanilla40

GPs. Through the dual parameter formulation, we establish a connection between the neural network,41

full GPs, and a sparse approximation similar to sparse variational GPs [67]. We refer to our method42

as Sparse Function-space Representation (SFR)—a sparse GP derived from a trained neural network.43

Moreover, this dual parameterization can be exploited to perform dual conditioning [8], i.e., an44

effective approach for conditioning on new data without needing to retrain the model (see Fig. 1).45

The contributions of this paper are as follows: (i) We introduce SFR, a new approach for building a46

sparse functional representation of a neural network. (ii) We demonstrate that, despite its sparsity,47

our method effectively captures predictive uncertainty, provides a means of updating the model post-48

training, and gives a compact regularizer suitable for continual learning. (iii) We provide extensive49

experiments for showcasing our approach and demonstrate significance and applicability across50

supervised, continual, and reinforcement learning, aiming to stimulate future use of the approach.51

1.1 Related work52

Bayesian deep learning Probabilistic methods in deep learning [74, 49] have recently gained53

increasing attention in the machine learning community as a means for uncertainty quantification54

(e.g., [32, 75]) and model selection (e.g., [27, 2]) with advancements in prior specification (e.g.,55

[9, 45, 46, 20, 48]) and efficient approximate inference under the specified model. Calculating the56

posterior distribution of a Bayesian neural network is usually intractable, and approximate inference57

techniques need to be used, such as variational inference [4], deep ensembles [39], MC dropout [21],58

or Laplace approximation [61, 38, 28]—each with its own set of strengths and weaknesses.59

Function-space methods Function-space perspectives on uncertainty in neural networks often use60

a Laplace-GGN approximation [14], which linearizes a trained neural network around MAP weights61

and approximates the neural network’s Hessian using the generalized Gauss–Newton approximation62

(GGN, [5]). While efficient, the GNN suffers from cubic scaling in parameter count, necessitating63

approximations like Kronecker factorisation [43, 61]. This linear model (with respect to the weights)64

refines predictions and provides uncertainty estimates [27]. It has a convenient interpretation as a GP65

[27, 34, 42]. However, the GP’s cubic O(N3) scaling with data points N requires costly approxima-66

tions, often resorting to using data subsets [27]. In the GP community, sparse approximations have67

mitigated this scaling issue (e.g., [67, 25]), but combining neural network linearization with sparse68

GP methods remains underexplored. Recent work has explored converting NNs to sparse variational69

GPs [52], however, their method requires separately retraining a GP model. Our work addresses this70

by utilizing the GP’s dual parameters [12], previously applied to non-conjugate likelihood models [1].71
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Figure 1: Regression example on an MLP with two hidden layers. Left: Predictions from the
trained neural network. Middle: Our approach summarizes all the training data with the help of a
set of inducing points. The model captures the predictive mean and uncertainty, and (right) makes it
possible to incorporate new data without retraining the model.
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subsets of training data [27], this parameterization allows capturing the contributions from all data37

points into a sparse representation, essential for predictive uncertainty. Crucially, the resulting GP38

directly predicts in the same space as the original trained neural network, with the benefit of avoiding39

the complexity introduced by working in weight-space and the notorious cubic complexity of vanilla40

GPs. Through the dual parameter formulation, we establish a connection between the neural network,41

full GPs, and a sparse approximation similar to sparse variational GPs [67]. We refer to our method42

as Sparse Function-space Representation (SFR)—a sparse GP derived from a trained neural network.43

Moreover, this dual parameterization can be exploited to perform dual conditioning [8], i.e., an44

effective approach for conditioning on new data without needing to retrain the model (see Fig. 1).45

The contributions of this paper are as follows: (i) We introduce SFR, a new approach for building a46

sparse functional representation of a neural network. (ii) We demonstrate that, despite its sparsity,47

our method effectively captures predictive uncertainty, provides a means of updating the model post-48

training, and gives a compact regularizer suitable for continual learning. (iii) We provide extensive49

experiments for showcasing our approach and demonstrate significance and applicability across50

supervised, continual, and reinforcement learning, aiming to stimulate future use of the approach.51

1.1 Related work52

Bayesian deep learning Probabilistic methods in deep learning [74, 49] have recently gained53

increasing attention in the machine learning community as a means for uncertainty quantification54

(e.g., [32, 75]) and model selection (e.g., [27, 2]) with advancements in prior specification (e.g.,55

[9, 45, 46, 20, 48]) and efficient approximate inference under the specified model. Calculating the56

posterior distribution of a Bayesian neural network is usually intractable, and approximate inference57

techniques need to be used, such as variational inference [4], deep ensembles [39], MC dropout [21],58

or Laplace approximation [61, 38, 28]—each with its own set of strengths and weaknesses.59

Function-space methods Function-space perspectives on uncertainty in neural networks often use60

a Laplace-GGN approximation [14], which linearizes a trained neural network around MAP weights61

and approximates the neural network’s Hessian using the generalized Gauss–Newton approximation62

(GGN, [5]). While efficient, the GNN suffers from cubic scaling in parameter count, necessitating63

approximations like Kronecker factorisation [43, 61]. This linear model (with respect to the weights)64

refines predictions and provides uncertainty estimates [27]. It has a convenient interpretation as a GP65

[27, 34, 42]. However, the GP’s cubic O(N3) scaling with data points N requires costly approxima-66

tions, often resorting to using data subsets [27]. In the GP community, sparse approximations have67

mitigated this scaling issue (e.g., [67, 25]), but combining neural network linearization with sparse68

GP methods remains underexplored. Recent work has explored converting NNs to sparse variational69

GPs [52], however, their method requires separately retraining a GP model. Our work addresses this70

by utilizing the GP’s dual parameters [12], previously applied to non-conjugate likelihood models [1].71
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Figure 1: Regression example on an MLP with two hidden layers. Left: Predictions from the
trained neural network. Middle: Our approach summarizes all the training data with the help of a
set of inducing points. The model captures the predictive mean and uncertainty, and (right) makes it
possible to incorporate new data without retraining the model.
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subsets of training data [27], this parameterization allows capturing the contributions from all data37

points into a sparse representation, essential for predictive uncertainty. Crucially, the resulting GP38

directly predicts in the same space as the original trained neural network, with the benefit of avoiding39

the complexity introduced by working in weight-space and the notorious cubic complexity of vanilla40

GPs. Through the dual parameter formulation, we establish a connection between the neural network,41

full GPs, and a sparse approximation similar to sparse variational GPs [67]. We refer to our method42

as Sparse Function-space Representation (SFR)—a sparse GP derived from a trained neural network.43

Moreover, this dual parameterization can be exploited to perform dual conditioning [8], i.e., an44

effective approach for conditioning on new data without needing to retrain the model (see Fig. 1).45

The contributions of this paper are as follows: (i) We introduce SFR, a new approach for building a46

sparse functional representation of a neural network. (ii) We demonstrate that, despite its sparsity,47

our method effectively captures predictive uncertainty, provides a means of updating the model post-48

training, and gives a compact regularizer suitable for continual learning. (iii) We provide extensive49

experiments for showcasing our approach and demonstrate significance and applicability across50

supervised, continual, and reinforcement learning, aiming to stimulate future use of the approach.51
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Bayesian deep learning Probabilistic methods in deep learning [74, 49] have recently gained53

increasing attention in the machine learning community as a means for uncertainty quantification54

(e.g., [32, 75]) and model selection (e.g., [27, 2]) with advancements in prior specification (e.g.,55

[9, 45, 46, 20, 48]) and efficient approximate inference under the specified model. Calculating the56

posterior distribution of a Bayesian neural network is usually intractable, and approximate inference57

techniques need to be used, such as variational inference [4], deep ensembles [39], MC dropout [21],58

or Laplace approximation [61, 38, 28]—each with its own set of strengths and weaknesses.59

Function-space methods Function-space perspectives on uncertainty in neural networks often use60

a Laplace-GGN approximation [14], which linearizes a trained neural network around MAP weights61

and approximates the neural network’s Hessian using the generalized Gauss–Newton approximation62

(GGN, [5]). While efficient, the GNN suffers from cubic scaling in parameter count, necessitating63

approximations like Kronecker factorisation [43, 61]. This linear model (with respect to the weights)64

refines predictions and provides uncertainty estimates [27]. It has a convenient interpretation as a GP65

[27, 34, 42]. However, the GP’s cubic O(N3) scaling with data points N requires costly approxima-66

tions, often resorting to using data subsets [27]. In the GP community, sparse approximations have67

mitigated this scaling issue (e.g., [67, 25]), but combining neural network linearization with sparse68

GP methods remains underexplored. Recent work has explored converting NNs to sparse variational69

GPs [52], however, their method requires separately retraining a GP model. Our work addresses this70

by utilizing the GP’s dual parameters [12], previously applied to non-conjugate likelihood models [1].71
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Figure 1: Regression example on an MLP with two hidden layers. Left: Predictions from the
trained neural network. Middle: Our approach summarizes all the training data with the help of a
set of inducing points. The model captures the predictive mean and uncertainty, and (right) makes it
possible to incorporate new data without retraining the model.
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Figure 4: Cartpole swingup with sparse reward. Training curves showing that SFR’s uncertainty
estimates improve sample efficiency in RL. Our method ( ) converges in fewer environment steps
than the baseline model-based RL method and DDPG, the model-free baseline. The dashed lines
mark the asymptotic return for the methods not coverged in the plot.

goal is to swing the pole up and balance it around the upward position. We increase the difficulty314

of exploration by using a sparse reward function. See App. C for an overview of the reinforcement315

learning problem, details of the algorithm, and the experiment setup.316

Fig. 4 shows training curves for using SFR as the dynamic model ( ), along with a Laplace-317

GGN [27] with GLM predictions ( ), an ensemble of neural networks ( ), and a basic MLP318

without uncertainty ( ). To ensure a fair comparison, we maintain the same MLP architec-319

ture/training scheme across all these methods and incorporate them into the same model-based RL320

algorithm (see App. C). We also compare our results with Deep Deterministic Policy Gradient (DDPG,321

[41]), a model-free RL algorithm ( ). The training curves show that SFR’s uncertainty estimates322

help exploration as it converges in fewer episodes, demonstrating higher sample efficiency. As323

expected, the MLP strategy (without uncertainty) was not able to successfuly explore the environment.324

6 Discussion and conclusion325

In this paper, we have introduced SFR, a novel approach for representing neural networks in sparse326

function space, exploiting the dual parameters for an efficient low-rank approximation that accom-327

modates information from the entire data distribution. Our method offers a powerful mechanism for328

capturing predictive uncertainty, updating the model with new data without retraining, and providing329

a compact representation suitable for continual learning. These aspects were demonstrated in a330

wide range of problems, data sets, and learning contexts. We showcased our method’s ability to331

capture uncertainty in UCI classification tasks (Sec. 5.1), demonstrated robustness on image data332

sets (Sec. 5.2), established its potential for continual learning (Sec. 5.3), and finally, verified its333

applicability in reinforcement learning scenarios (Sec. 5.4).334

In practical terms, our model serves a role similar to a sparse GP. However, unlike a conventional GP, it335

does not provide a straightforward method for specifying or tuning the prior covariance function. This336

limitation can be addressed indirectly: the architecture of the neural network and the choice of activa-337

tion functions can be used to implicitly specify and tune the prior assumptions, thereby incorporating338

a broad range of inductive biases into the model. It is important to note that the Laplace-GGN ap-339

proach linearizes the network around the MAP solution w∗, resulting in the function-space prior (and340

consequently the posterior) being only a locally linear approximation of the neural network model.341

The broader impact of this work lies in its potential to provide tooling for how neural networks are uti-342

lized, offering more efficient and principled ways of handling uncertainty and continual learning. This343

contribution, we believe, has significant implications for future applications of machine learning in344

dynamic, real-world settings where data is unevenly distributed, uncertain, and continuously evolves.345

A reference implementation of the methods presented in this paper is currently available as supple-346

mentary material and will be made available under the MIT License on GitHub upon acceptance.347
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M

N
IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01

C
IF

A
R

-1
0

NN MAP - 0.69±0.03 0.77±0.01

LAPLACE DIAG - 2.37±0.04 0.10±0.00

LAPLACE KRON - 2.37±0.02 0.10±0.00

LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.
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SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.
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SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04

BREAST CANCER 683 10 2 0.09±0.05 0.72±0.06 0.47±0.09 0.23±0.02 0.18±0.02

DIGITS 351 34 2 0.07±0.04 2.35±0.01 3.11±0.15 1.10±0.02 1.07±0.03

GLASS 214 9 6 1.02±0.41 1.82±0.06 1.77±0.07 1.14±0.07 0.93±0.08

IONOSPHERE 846 18 4 0.38±0.05 0.70±0.03 0.37±0.04 0.48±0.03 0.39±0.03

SATELLITE 1000 21 3 0.24±0.02 1.83±0.02 0.78±0.04 0.32±0.01 0.26±0.02

VEHICLE 1797 64 10 0.40±0.06 1.40±0.02 1.55±0.01 0.88±0.02 0.85±0.04

WAVEFORM 6435 35 6 0.40±0.05 1.10±0.01 1.00±0.02 0.44±0.03 0.38±0.02

SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.

MODEL M NLPD ACC.(%)

F-
M
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IS

T

NN MAP - 0.23±0.02 0.92±0.00

LAPLACE DIAG - 2.41±0.02 0.10±0.00

LAPLACE KRON - 2.38±0.01 0.10±0.00

LAPLACE GLM DIAG - 1.65±0.03 0.67±0.03

LAPLACE GLM KRON - 1.10±0.04 0.84±0.01

GP SUBSET
2048 0.91±0.07 0.82±0.03

3200 0.74±0.05 0.84±0.01

SFR
2048 0.30±0.02 0.92±0.01

3200 0.28±0.02 0.92±0.01
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LAPLACE GLM DIAG - 1.33±0.05 0.72±0.02

LAPLACE GLM KRON - 1.04±0.08 0.76±0.02

GP SUBSET
2048 1.18±0.07 0.67±0.04

3200 1.07±0.04 0.70±0.02

SFR (Ours) 2048 0.74±0.02 0.79±0.01

3200 0.72±0.02 0.79±0.01

SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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Figure 3: Effective sparsification: Comparison of convergence in number of inducing points M in
NLPD (mean±std over 5 seeds) on classification tasks: SFR ( ) vs. GP subset ( ). Our SFR con-
verges fast for all cases showing clear benefits of its ability to summarize all the data in a sparse model.

Table 1: SFR for uncertainty quantification: Comparison on UCI data with negative log predictive
density (NLPD±std, lower better). SFR, with M = 20% of N , outperforms the Laplace approximation
(BNN/GLM) and the GP subset when the prior precision (�) is not tuned.

NN MAP LAPLACE LAPLACE GLM GP subset SFR (Ours)
N D C full full M = 20% of N M = 20% of N

AUSTRALIAN 690 14 2 0.35±0.06 0.71±0.03 0.43±0.04 0.39±0.03 0.35±0.04
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SFR on UCI data sets Table 1 further demonstrates SFR’s uncertainty quantification on the UCI
classification tasks. It shows that SFR outperforms the Laplace approximation (when using both BNN
and GLM predictions) and the GP subset with M = 20% of N on all eight tasks.

Table 2: Image classification results using CNN: We
report NLPD and accuracy (mean±std over 5 seeds).
SFR outperforms the GP subset and Laplace methods.
The prior precision � is not tuned posthoc.
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SFR experiments on image data sets We
show the performances of SFR on image
data sets, which present a more challenging
task and require more complicated NN
architectures than UCI experiments. In
particular, we report the results obtained us-
ing a CNN architecture on FMNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). In Table 2, we report the
results obtained keeping the same prior
precision � at training and inference
time. We refer the reader to Apps. D.1.1
and D.1.3 for a detailed explanation of
the experiment. The performance of SFR
using M = 2048 and M = 3200 inducing
points outperforms the GP subset method
and Laplace approximation when using
both BNN and GLM predictions. This
experiment indicates that SFR’s sparse
dual parameterization effectively captures
information from all data points even when
dealing with high-dimensional data.

SFR scales to large data sets It is well known that GPs struggle to scale to large data sets.
Nevertheless, Wang et al. (2019) scaled GPs to a million data points. We repeat their main experiment
on the HouseElectric data set and recover better NLPD of �0.153±0.001 vs. 0.024±0.984 for an
SVGP model (Hensman et al., 2013) on the same data set with a 5-fold split. Furthermore, we
also record a better wall-clock time of 6129±996 s vs. 11982±455 s, showing we can beat the GP
equivalent model on large data sets for timing and performances.
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