Function-space Parameterization of Neural Networks for Sequential Learning

¹Aalto University

TL;DR

- Neural networks (NNs) have limitations: estimating uncertainty, incorporating new data, and avoiding catastrophic forgetting.
- Our method, Sparse Function-space Representation (SFR):
- converts NN to sparse Gaussian process (GP) via dual parameters,
- gives good uncertainty estimates,
- can incorporate new data without retraining,
- can maintain a functional representation for continual learning,
- can be used for uncertainty-guided exploration in model-based RL.

Motivation

	SFR (Ours)	GP	
Uncertainty estimates			
Image inputs		×	
Large data		×	
Incorporate new data			

1. Train Neural Network

Inputs: NN $f_{\mathbf{w}}(\cdot)$, data $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ **Outputs:** Maximum A-Posteriori (MAP) weights $\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathcal{L}(\mathcal{D}, \mathbf{w}) = \sum_{i=1} \underbrace{\ell(f_{\mathbf{w}}(\mathbf{x}_i), y_i)}_{-\log p(y_i \mid f_{\mathbf{w}}(\mathbf{x}_i))} + \underbrace{\mathcal{R}(\mathbf{w})}_{-\log p(\mathbf{w})}$

2. From NN to Function-space Laplace

(1) Linerised NN $f_{\mathbf{w}^*}(\mathbf{x}) \approx \nabla_{\mathbf{w}} f_{\mathbf{w}^*}(\mathbf{x})^\top \mathbf{w} \rightarrow \mathbf{function space}$ formulation: $p(\mathbf{f}) = \mathcal{N}\left(\mathbf{f} \mid \mathbf{0}, \kappa(\mathbf{X}, \mathbf{X})\right) \quad \text{with} \quad \kappa(\mathbf{x}, \mathbf{x}') = \frac{1}{\delta} \nabla_{\mathbf{w}} f_{\mathbf{w}^*}(\mathbf{x})^\top \nabla_{\mathbf{w}} f_{\mathbf{w}^*}(\mathbf{x})$ (2) Convert training objective to function space, $\mathcal{L}(\mathcal{D}, \mathbf{w}) = -\sum_{i=1}^{N} \log p(y_i \mid f_i) - \log p(\mathbf{f}).$ (3) Function-space Laplace approximation:

$$p(\mathbf{f} \mid \mathcal{D}) \approx q(\mathbf{f}) = \mathcal{N}(\mathbf{f} \mid \mathbf{m_f}, \mathbf{S_f})$$

• GP predictive posterior is computational expensive.

²Finnish Center for Artificial Intelligence

Weight Space w_1

Function Space

Sparse Function-space Representation (SFR)

NN MAP

weights \boldsymbol{w}^*

• Sample inducing inputs $Z \subseteq X$ from training inputs X. SFR predictive posterior: $\mathbb{E}_{q(f_i)}[f_i] pprox \mathbf{k}_{\mathbf{z}i}^{^{\mathsf{T}}} \boldsymbol{K}_{\mathbf{z}\mathbf{z}}^{-1} \boldsymbol{lpha}_{\mathbf{u}}$ and

 $\operatorname{Var}_{q(f_i)}[f_i] \approx k_{ii} - \mathbf{k}_{\mathbf{z}i}^{\top} [\mathbf{K}_{\mathbf{z}\mathbf{z}}^{-1} - (\mathbf{K}_{\mathbf{z}\mathbf{z}} + \mathbf{B}_{\mathbf{u}})^{-1}] \mathbf{k}_{\mathbf{z}i}$

with **sparse dual parameters**,

 $\boldsymbol{lpha}_{\mathbf{u}} = \sum_{i=1}^{N} \mathbf{k}_{\mathbf{z}i} \, \hat{\alpha}_i$ and $B_{
m u}$

 $\hat{\alpha}_i \coloneqq
abla_f \log p(y_i \mid f)|_{f=f_i}$ and $\hat{\beta}_i$

• Incorporating new data \mathcal{D}^{new} with dual updates is easy,

 $oldsymbol{lpha}_{\mathbf{u}} \leftarrow oldsymbol{lpha}_{\mathbf{u}} + \sum_{\mathbf{x}_i, y_i \in \mathcal{D}^{\mathsf{new}}} \mathbf{k}_{\mathbf{z}i} \, \hat{lpha}_i \quad \mathsf{and} \quad oldsymbol{B}_{\mathbf{u}}$ update

Sparsification in Image Classification

SFR (—) requires fewer inducing achieve good (low) NLPD.

OOD Detection with CNNs

SFR demonstrates good out-of-distribution (OOD) detection as it has low predictive entropy for in-distribution data (FMNIST,) and high predictive entropy for out-of-distribution data (MNIST, \blacksquare).

Aidan Scannell^{*12} Riccardo Mereu^{*1} Paul Chang¹ Ella Tamir¹ Joni Pajarinen¹ Arno Solin¹

*Equal Contribution

$$\mathbf{k} = \sum_{i=1}^{N} \mathbf{k}_{\mathbf{z}i} \, \hat{\beta}_i \, \mathbf{k}_{\mathbf{z}i}^{\mathsf{T}}$$
 $\mathbf{k}_{\mathbf{z}i} = -\nabla_{ff}^2 \log p(y_i \mid f_i)|_{f=1}$

$$\leftarrow \boldsymbol{B}_{\mathbf{u}} + \underbrace{\sum_{\mathbf{x}_{i}, y_{i} \in \mathcal{D}^{\text{new}}} \mathbf{k}_{\mathbf{z}i} \, \hat{\beta}_{i} \, \mathbf{k}_{\mathbf{z}i}^{^{\mathsf{T}}}}_{\text{update}}$$

SFR is effective for function-space regularization in CL.

Model-based Reinforcement Learning

SFR's uncertainty estimates can improve sample efficiency in model-based RL by guiding exploration.

Computationally

Costly retraining

Continual Learning