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TL;DR

Neural networks (NNs) have limitations: estimating uncertainty,

incorporating new data, and avoiding catastrophic forgetting.
Our method, Sparse Function-space Representation (SFR):

converts NN to sparse Gaussian process (GP) via dual parameters,

gives good uncertainty estimates,

can incorporate new data without retraining,

can maintain a functional representation for continual learning,

can be used for uncertainty-guided exploration in model-based RL.

Motivation

SFR (Ours) GP NN

Uncertainty estimates ✅ ✅ ❌

Image inputs ✅ ❌ ✅

Large data ✅ ❌ ✅

Incorporate new data ✅ ✅ ❌

1. Train Neural Network

Inputs: NN fw(·), data D = {(xi, yi)}N
i=1

Outputs: Maximum A-Posteriori (MAP) weights

w∗ = arg minw L(D, w) =
N∑

i=1
`(fw(xi), yi)︸ ︷︷ ︸
− log p(yi | fw(xi))

+ R(w)︸ ︷︷ ︸
− log p(w)
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2. From NN to Function-space Laplace

(1) Linerised NN fw∗(x) ≈ ∇wfw∗(x)>w→ function space formulation:

p(f) = N (f |0, κ(X, X)) with κ(x, x′) = 1
δ
∇wfw∗(x)>∇wfw∗(x)

(2) Convert training objective to function space,

L(D, w) = −∑N
i=1 log p(yi | fi)− log p(f).

(3) Function-space Laplace approximation:

p(f | D) ≈ q(f) = N (f |mf , Sf)
⚠️ GP predictive posterior is computational expensive.
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Figure A9: SFR overview: We linearize the trained NN around the MAP weights w⇤ and interpret
in function space, via a kernel formulation (·, ·) (Eq. (9)). In contrast to previous approaches, we
perform a Laplace approximation on the function-space objective Eq. (10). This leads to SFR’s dual
parameterization, scaling to large data sets Eq. (12) and incorporating new data efficiently Eq. (17).
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Sparse Function-space Representation (SFR)

Sample inducing inputs Z ⊆X from training inputs X .

SFR predictive posterior:

Eq(fi)[fi] ≈ kT

ziK
−1
zz αu and

Varq(fi)[fi] ≈ kii − k>zi[K−1
zz − (Kzz + Bu)−1]kzi

with sparse dual parameters,

αu = ∑N
i=1 kzi α̂i and Bu =

N∑
i=1

kzi β̂i kT

zi

α̂i := ∇f log p(yi | f )|f=fi
and β̂i := −∇2

ff log p(yi | fi)|f=fi

Incorporating new data Dnew with dual updates is easy,

αu← αu + ∑
xi,yi∈Dnew kzi α̂i︸ ︷︷ ︸

update

and Bu← Bu + ∑
xi,yi∈Dnew kzi β̂i kT

zi︸ ︷︷ ︸
update

Sparsification in Image Classification

SFR ( ) requires fewer inducing

points than a GP subset ( ) to

achieve good (low) NLPD.
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Figure A11: OOD detection with CNN: Histograms showing each method’s predictive entropy at
ID data (FMNIST, blue) where lower is better and at OOD data (MNIST, red) where higher is better.
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OOD Detection with CNNs
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Figure A11: OOD detection with CNN: Histograms showing each method’s predictive entropy at
ID data (FMNIST, blue) where lower is better and at OOD data (MNIST, red) where higher is better.
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SFR demonstrates good out-of-distribution (OOD) detection as it has

low predictive entropy for in-distribution data (FMNIST, ) and high

predictive entropy for out-of-distribution data (MNIST, ).

Continual Learning

SFR is effective for function-space regularization in CL.

Data Memory points Decision boundary / Predictive probability

In
fe
re
n
c
e

Task #1 Task #2 Task #3 Task #4

Published as a conference paper at ICLR 2024

F POSTER TABLE

Method S-MNIST (SH)
40 pts./task

S-MNIST (SH)
200 pts./task

S-FMNIST (SH)
200 pts./task

P-MNIST (SH)
200 pts./task

DER 85.26±0.54 92.13±0.45 82.03±0.57 93.08±0.11

FROMP 75.21±2.05 89.54±0.72 78.83±0.46 94.90±0.04

S-FSVI 84.51±1.30 92.87±0.14 77.54±0.40 95.76±0.02

SFR (Ours) 89.22±0.76 94.19±0.26 81.96±0.24 95.58±0.08
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Model-based Reinforcement Learning

Strategy Policy π : S → A based on posterior sampling:

π∗ = arg max
π∈Π

Eε0:∞

[ ∞∑
t=0

γtr(st, at) | st+1 = f̃ (st, at)
]

s.t. f̃ ∼ qu(f | D),
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Figure A10: Cartpole swingup with sparse reward: Training curves show that SFR’s uncertainty es-
timates improve sample efficiency in RL. Our method ( ) converges in fewer environment steps than
the baselines. The dashed lines mark the asymptotic return for the methods not coverged in the plot.
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SFR’s uncertainty estimates can improve sample efficiency in

model-based RL by guiding exploration.
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