
Coursework 1 - MMSW 1

THE KIDNAPPED ROBOT
PROBLEM

November 24, 2015

Aidan Scannell - 25%
Asher Winterson - 25%
David Mathias - 25%
Maxwell Martin - 25%



The Kidnapped Robot Problem University of Bristol

1 Introduction

This report will outline the approach that was developed for solving the
kidnapped robot problem. This involved developing algorithms capable
of localising a robot within a known environment but at an unknown
position and moving it to a target location. This was achieved in sim-
ulation using the BotSim library in Matlab and then implemented onto
a real robot. The overall procedure is shown below:

while Not Converged do
Localisation Algorithm

end
while Not at Target Location do

Route Planning Algorithm
Movement
Relocalisation

end
Algorithm 1: Overall

The robot was limited to using a single ultrasound sensor, an odom-
etry sensor and two motors. The robot was designed and built to rep-
resent the simulated robot as accurately as possible. This was achieved
by positioning the ultrasound sensor directly above the turning centre,
located in the middle of the two motors. In theory this configuration
enabled the robot to turn without displacing the sensor, although in
reality this is unlikely.

The localisation algorithm utilised a particle filter to approximately
calculate the robot’s position. The Euclidean distance was used to score
the particles with a low variance resampling procedure.

Once a suitable estimation for the position of the robot was calcu-
lated, a wave-front based route planner was implemented to generate a
discretised route to the target. To ensure that the robot did not clash
with a wall, a smaller, inwardly offset map was generated and used in
the route planning.

The motion of the robot was divided into rotate and translate, there-
fore requiring separate turn and move commands. The list of unit moves
from the route planner was then combined into turn and forward com-

Page 2



The Kidnapped Robot Problem University of Bristol

mands for the robot.
The simulated robot performed scans and relocalised along the route

to ensure its accuracy as it moved.

2 Localisation

This section of the report will outline and discuss the localisation algo-
rithm that was used. A particle filter method estimates a location of the
robot using the following approach:

Initialisation
while Not Converged & Under Maximum Number of Iterations
do

for All Particles do
Score Particles
Estimation of Position
Estimation of Orientation

end
Resample
Move
Test Convergence

end
Algorithm 2: Localisation

2.1 Initialisation

The particle filter required particles with equal weights to be randomly
generated within the map. A higher number of particles reduces the
variance but has a greater computational cost. For this reason an op-
timal particle density was required that balanced computational time
and variance. The chosen particle density was obtained through trial
and error and was achieved dynamically for each map by considering
the maps area. The polyarea function in Matlab was used to calculate
the maps area and thus determine the number of particles required.

Page 3



The Kidnapped Robot Problem University of Bristol

2.2 Number of Scans

The number of scans performed by the robot and particles determined
how well the particles represented the robot. Too few scans resulted in
many particles in close proximity to the robot returning high Euclidean
distances and thus low weights. Increasing the number of scans improved
the likelihood that a particle in close proximity to the robot would obtain
low Euclidean distances and thus high weights. It also resulted in a more
accurate estimate of each particle’s orientation.

2.2.1 Real & Simulation

In the simulation twenty scans were used because it enabled particles
in close proximity to the robot to obtain a high weight and select an
accurate orientation. Increasing the number of scans is however more
computationally expensive. In the case of the real robot there is also a
delay between scans, introduced because the sensor is one-dimensional
and requires mechanical turning to obtain all of the scans. The time
constraint and the errors incurred from scans at 45◦’s to walls resulted
in four scans being selected for the real robot.

2.3 Scoring The Particles

The particles were scored using the Euclidean distance (a metric for the
difference between each particle’s scans and the robot’s scans). Equation
1 shows the equation that was used, where d is the Euclidean distance,
n is the number of scans, ri represents a robot’s scan and p represents a
particle’s scan. The Euclidean distance was calculated for every orien-
tation for each particle and the minimum was selected. The orientation
that achieved the minimum Euclidean distance was representative of the
particle’s orientation [2].

d =

√√√√ n∑
i=1

(pi − r)2 (1)

The weight of each particle was then calculated by taking the recip-
rocal of the Euclidean distance and normalising these values.

Page 4



The Kidnapped Robot Problem University of Bristol

2.4 Resampling

Resampling too frequently can result in decreased diversity and result
in the particles converging to the wrong point. Conversely, resampling
too infrequently can lead to particles staying in positions of low proba-
bility (too diverse). This diversity becomes an approximation error, also
known as variance of the estimator. As the variance of the particle filter
decreases the variance of it as an estimator of the real belief increases
[1]. For this reason a low variance resampling procedure was utilised.
The resampling algorithm selects a single random number and uses this
to select particles. The particles that are selected have probabilities that
are proportional to the sample weight. This is achieved by selecting a
random integer between zero and the number of particles being used. Al-
gorithm 3 shows the resampling procedure based on Sebastian Thrun’s
low variance resampling that was used for the project. The selection
utilises a sequential process which improves the procedure’s efficiency
and thus practical performance.

N = Number of particles
r = Random number between 0 and N
w = Weight
i = 1
c = w1

for m = 1 : N do
u = r + m−1

N

while u > c do
c = c + wi

i = i + 1
end
Update particle set

end
Algorithm 3: Resampling [1]

2.5 Movement

The movement of the robot is crucial for effective localisation. It is
important that the scans are taken at locations that result in accurate

Page 5



The Kidnapped Robot Problem University of Bristol

sensor readings. Moving the robot effectively enables unrealistic parti-
cles to be moved off of the map and resampled to more likely positions.

The movement algorithm, on the first iteration, interrogates the scan
to find the maximum distance to any wall and the corresponding angle.
In subsequent iterations, steps of the maximum distance divided by an
arbitrary amount (e.g. 10) are taken. This allows the robot to travel
throughout the map in an exploratory fashion, which performs particu-
larly well for maps with repeated features. To prevent the robot from
repeatedly oscillating between equidistant points, a check is made every
iteration and if a flag is raised the second largest distance is used. When
turning, the direction of rotation with the least movement is chosen to
ensure the movement noise is minimized.

Due to the random nature of the kidnapped robot problem, a com-
mon problem was collisions with the wall during localisation. During
each scan, if a measurement is found to be below a threshold that is
determined by the radius of the robot, then evasive action is taken by
turning towards and moving into a location with greater space.

2.6 Convergence

During every iteration, it must be decided whether the particles have
converged within a reasonable distance of one another to ultimately
decide an estimated position for the robot. For this task a clustering
approach was used. This allows for an undefined number of clusters to
exist, therefore increasing the diversity of potential convergence points
and allowing for faster convergence. The approach searches through
the particle’s positions and angles and groups all values within a defined
tolerance together with a top level particle representing the cluster. Con-
vergence is reached when a maximum particle density is reached. This
threshold value is defined by the tolerance described above and the clus-
ter density. Both of these are defined dynamically as a function of map
area that has been found by performing linear regressions on various
map areas (for the real robot these values are constant). The top level
particle that is representing the converged cluster is chosen as the es-
timated position of the robot. The data is scaled for the orientation
tolerance so that a single value can be used to define all of the x, y and

Page 6



The Kidnapped Robot Problem University of Bristol

θ tolerances.

3 Route Planning & Movement

The route planning used the robot estimation outputted from the parti-
cle filter localisation and generates a discrete route based on unit moves
in the eight cardinal directions (N, NE, E etc.). The route planner used
was a variation of the wave-front algorithm that was based on the map
being split into a grid. The route was then smoothed into turn and move
commands for the robot to execute.

3.1 Minkowski Sum & Obstacle Inflation

A crucial part of robot motion is ensuring that the robot does not collide
with obstacles. The simulated robot only has a position and no size,
while obviously a real robot has a size envelope that cannot overlap with
walls. The advantage of the simulated robot is that it can be treated as
a point and as a result is far easier to handle for both route planning
and movement.

The Minkowski sum allows a physical robot to be considered a point
as it inflates the obstacles and wall by the size of the robot. In this
scenario of the kidnapped robot, it means that the map the robot can
move in is reduced so that it does not clash with a wall.

Figure 1 shows the default map with three different Minkowski sums
added to it. The LEGO robot used had a radius of 11 cm and so the
map was offset by its size.

Algorithm 4 outlines how the Minkowski sum function works. The
first part is to test to see if the list of vertices is creating a clockwise
or anti-clockwise polygon. This is required to ensure that the new map
is offset in the right direction. The next step is to iterate through each
vertex and calculate the angle between its adjacent edges. Depending
on the size of the angle, the offset distance can change with more acute
angles needing a larger offset. The angle is halved and used to create a
vector equal to the length off the offset distance. Using this vector and
starting at the old vertex it is possible to generate the new offset map
vertex.

Page 7



The Kidnapped Robot Problem University of Bristol

Figure 1: A plot of the normal map with three different Minkowski sums
applied

Variable Initialisation
Test Polygon Direction
for each Map Vertex do

Calculate angle between adjacent edges
Calculate offset distance required from vertex
if Polygon Direction > 0 then

Offset direction = −1
else

Offset direction = 1
end
Halve angle
Calculate translational vectors to convert old map to new
Append new vertex in array

end
Algorithm 4: Minkowski Sum

This algorithm is very rudimentary as it cannot deal with self inter-
section or applying radii to corners with large internal angles. However,
it is suitable for this application as the maps have relatively simply ge-
ometry and small offsets.

Page 8



The Kidnapped Robot Problem University of Bristol

3.2 Route Planning

A wave-front based route planner was chosen as it was robust and offered
simple moves for the robot to execute. The accuracy of this route plan-
ner is entirely dependent on the resolution of the grid used to discretise
the map. A resolution of 1 cm was used as it was small enough to allow
accurate routes at the <5 cm scale but not too small to be computation-
ally slow. The grid was generated with the aid of the built-in BotSim
function ‘pointInsideMap’. This process was performed outside of the
main route planning function as once generated it would not change.

Algorithm 5 shows the main processes in the route planner. The
planner takes the start point (estimate of robot position) and tests to
see which adjacent grid positions are open. This then iterates across the
whole map, cumulating the path cost and closing off positions previously
visited. This propagates through the map like a wave front, hence the
name. Once complete, the moves used are calculated from the target
back to the start.

As this is moving in eight directions on a gird, the four diagonal
moves will have a higher cost. A normal cost is equal to 1, while for
diagonal moves it is equal to 1.414 (=sqrt(12 + 12)). This was needed
to ensure that the lowest cost path was chosen.

If the robot estimate is inside the Minkowski sum (or off the map
entirely) or the target is not in the map, then no path will be found. In
this case the robot makes small movements to try and find the map.

One problem that had to be overcome was the route planner’s choice
of diagonals that cut across internal map corners. This originated from
the grid layout. To stop this happening, if the grid position in question
was on a map edge, diagonal moves were bypassed.

The disadvantage of this route planner is that the robot can only
turn in 45 degree increments and as result cannot move efficiently along
different path angles. Also due to the grid based planning the function
has to perform many iterations. However the main advantages of this
approach are the ease of implementation and the straightforward turn
and rotate moves generated for the robot.

Page 9



The Kidnapped Robot Problem University of Bristol

Variable Initialisation
Generate Map Grid
Convert Real World Start and Target to Map Grid coordinates
while Target is not Found & Resign is not True do

if No path options then
Resign = True

else
Sort available grid positions by cost
Remove lowest cost position and assign it to current
position
if Target is Found then

Target = Found
else

for each of Cardinal Moves do
New position = current position + move
if New position is in map bounds & Not closed
then

Calculate new cost
Add new position and cost to open array
Close new position

end

end

end

end

end
if Resign is not True then

while Start is not reached do
Work backwards to find specific route

end

end
Algorithm 5: Wave-Front Route Planning

3.3 Movement Commands

The ’moves’ array that is output from the path planning is iterated
through to complete the required rotations and movements. Rotations
are conducted by taking into account the previous rotation and the in-

Page 10



The Kidnapped Robot Problem University of Bristol

tended direction to find the best direction to turn. This minimises error
by not making unnecessarily large rotations.

After each rotation the robot would then perform a movement. As
the ‘moves’ array provides 1 cm moves, it was important to sum the
distance if the same number was repeated to allow for a smoother move-
ment. A ‘while’ loop was used to sum identical consecutive numbers.
This ‘sum moves’ variable can then be multiplied by the Tacholimit
value for 1 cm, allowing the robot to move forward the required distance
in one step.

The simulation version followed an identical method but had the
advantage of being able to specify non-integer numbers for movement
or rotation. The real robot’s TachoLimit values must be integers or the
function will not work, this allows for rounding errors that will give a
slight inaccuracy.

4 Sensor and Motor Noise Modelling

After a few practice tests using the motors and sensors it was soon
obvious that both incorporated a level of noise. By quantifying this
noise, the probability of the robot doing the required move or scan can
be used to allow for a level of uncertainty when moving the particles
that estimate the robot position. It was important to get a large enough
sample size when testing to provide meaningful results that could be
used to calculate the standard deviation. Figure 2 shows the standard
deviation calculated for movement.

The standard deviation was found for forward and sideways move-
ment and was found to vary across the distances tested. It was therefore
not acceptable to use a fixed value. The standard deviation varied de-
pending on the movement. It was noted that as the robot started to
move longer distances, it began to drift further from its intended path
and off to the side. From this plot it is also possible to obtain the optimal
distance to move that will result in the least amount of noise.

Similar testing was done for the ultrasonic sensor noise and rotation.
The sensor was found to be very accurate when measuring perpendicular
to a wall. Problems began to arise when measuring at an angle. At 45
degrees the standard deviation grew to be very large, especially at close

Page 11



The Kidnapped Robot Problem University of Bristol

or far distances from the wall. This further reinforced our decision to use
four scans as appose to eight due to the scans always being perpendicular
to the walls. This dramatically increased the scan’s reliability and the
standard deviation was kept far smaller. Rotational noise was noticeably
varied, as would be expected for larger rotations and resulted in a higher
standard deviation.

References

[1] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT
Press, 2005.

[2] F Viani, P Rocca, G Oliveri, Daniele Trinchero, and A Massa. Local-
ization, tracking, and imaging of targets in wireless sensor networks:
An invited review. Radio Science, 46(5), 2011.

Page 12



The Kidnapped Robot Problem University of Bristol

5 Appendix

Figure 2: Standard deviation of robot movement displayed as a function
of distance

Figure 3: Standard deviation of robot rotation displayed as a function
of rotation

Page 13



The Kidnapped Robot Problem University of Bristol

Figure 4: Standard deviation of sensor scanning displayed as a function
of distance scanned

Page 14


	Introduction
	Localisation
	Initialisation
	Number of Scans
	Real & Simulation

	Scoring The Particles
	Resampling
	Movement
	Convergence

	Route Planning & Movement
	Minkowski Sum & Obstacle Inflation
	Route Planning
	Movement Commands

	Sensor and Motor Noise Modelling
	Appendix

