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Goals

Goal 1 Navigate to the target state xf

Goal 2 Remain in the operable, desired dynamics mode k∗



Mode remaining navigation problem

min
π∈Π

T∑
t=0

c(xt ,π(xt , t)) (1a)

s.t.

xt+1 = fk (xt ,π(xt , t)) + ϵk , if α(xt ) = k ∀t ∈ {0, . . . ,T − 1}

(1b)

α(xt ) = k∗ ∀t ∈ {0, . . . ,T − 1}

(1c)

x0 = x0

(1d)

xT = xf

(1e)
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But dynamics are not known a priori. . .

min
π∈Π

T∑
t=0

c(xt ,π(xt , t)) (2a)

s.t. xt+1 = fk (xt ,π(xt , t)) + ϵk , if α(xt ) = k ∀t ∈ {0, . . . ,T − 1} (2b)

α(xt ) = k∗ ∀t ∈ {0, . . . ,T − 1} (2c)

x0 = x0 (2d)

xT = xf (2e)
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Solve using model-based reinforcement learning?
Learn dynamics model

Find trajectory to xf

δ− mode
remaining?

Execute trajectory

δ− mode exploration

yes

no

Experience



Contributions

1. Model learning

2. Mode remaining trajectory optimisation

▶ via latent geometry
▶ control as inference

3. Mode remaining exploration for model-based reinforcement learning
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Model learning - Gaussian processes don’t work. . .
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Model learning - mixture models?

MoE marginal likelihood

p (y | X,θ,ϕ) =
N∏

n=1

K∑
k=1

Pr (αn = k | xn ,ϕ)︸ ︷︷ ︸
gating network

p (yn | αn = k , xn ,θk )︸ ︷︷ ︸
expert k

, (3)



Model learning - mixtures of nonparametric experts

xn ,k

fk (Xk )θk αn ,k ϕ

ykσk

Nk

K

p (y | X,θ,ϕ) =
∑
α

p (α | X,ϕ)

 K∏
k=1

p ({yn : αn = k } | {xn : αn = k },θk )︸ ︷︷ ︸
expert k



Sum over exponentially many (KN ) sets of
assignments
▶ α = {α1, . . . ,αN }



Model learning - Parameterise the nonparametric
model?

Like a sparse GP parameterises a GP. . .

GP prior where Xk = {xn : αt = k }

fk (Xk ) ∼ N (µk (Xk ), kk (Xk , Xk ))

Augment with inducing points

fk (ζk ) ∼ N (µk (ζk ), kk (ζk , ζk ))

FITC for MoGPE?

p(y | f(ζ)) ≈
N∏

n=1

p(yn | f(ζ)) =
N∏

n=1

K∑
k=1

Pr (αn = k | xn ,ϕ)
K∏

k=1

p(yn | fk (ζk )).

Assumes inducing variables {fk (ζk )}
K
k=1, are a sufficient statistic for latent function

values {fk (Xk )}
K
k=1 AND the set of assignments α.
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Model learning - Parameterise the nonparametric
model?

Approximate marinal likelihood

p (y | X) ≈ Ep(h(ξ))p(f(ζ))

[
N∏

n=1

K∑
k=1

Pr(αn = k | h(ξ))p(yn | fk (ζk ))

]
(4)

xn ,k

fk (Xk )θk αn ,k hk (X) ϕk

ykσk

Nk K

K

xn

fk (xn) hk (xn )

fk (ζk ) hk (ξ)ζk ξ

θk ϕk

σk yn αn

Cat

N
K

K



Model learning - latent spaces for planning
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Mode remaining control

Goals

▶ Navigate to the target state xf
▶ Remain in desired dynamics mode

Assumptions

▶ Desired dynamics mode is known a priori
▶ Prior access to environment

▶ Such that a state transition data set D has been collected
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Mode remaining control - via latent geometry

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

−24 −16 −8 0 8 16 24
Gating function h2(x) mean

0 4 8 12 16 20 24 28 32 36
Gating function h2(x) variance

Mode boundary

Environment boundary No observations



Mode remaining control - via latent geometry

Desired mode’s gating function hk∗ : X → R

State trajectory x̄ : [t0, tf ] → X

Length minimising trajectories encode mode remaining behaviour

min Length(hk∗(x̄)) = min
∫ tf

t0
∥ẋ(t)∥G(x(t)) dt (5)

where,

∥ẋ(t)∥G(x(t)) =
√

ẋ(t)Gxt ẋ(t) (6)

But ignores epistemic uncertainty. . .
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∥ẋ(t)∥G(x(t)) dt (5)

where,

∥ẋ(t)∥G(x(t)) =
√
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Mode remaining control - via latent geometry
Metric depends on Jacobian1

Gxt = JT
xt

Jxt (7)

which is Normally distributed

J ∼ N (µJ ,ΣJ ) (8)

so metric follows non-central Wishart distribution

G ∼ WD
(
p,ΣJ ,E

[
JT ]E[J]) (9)

Expected metric increases length of trajectories in regions of high epistemic
uncertainty

E[G] = E[JT ]E[J] + λΣJ (10)

[3] Tosi et al. “Metrics for Probabilistic Geometries”. 2014.
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Mode remaining control as probabilistic inference

Pr(Ot = 1 | xt , ut ) ∝ exp(−γc(xt , ut ))

x0 x1 x2 x3

u0 u1 u2

O0 O1 O2

α0 α1 α2



Mode remaining control as probabilistic inference
Goal p(x̄, ū| x0,O0:T = 1,α0:T = k∗)

Variational inference (lower bound p(O0:T = 1,α0:T = k∗ | x0))

Lmode =−

T∑
t=0

Eq(xt |x0,α0:T=k∗
0:t−1)q(ut) [c(xt , ut )]︸ ︷︷ ︸

expected cost

(11)

+

T∑
t=0

Eq(xt |x0,α0:T=k∗
0:t−1)

[log Pr(αt = k∗ | xt )]︸ ︷︷ ︸
mode remaining term

+

T−1∑
t=0

H [ut ]︸ ︷︷ ︸
entropy

(12)
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Mode remaining exploration for MBRL

Goals

▶ Navigate to the target state xf
▶ Remain in desired dynamics mode

Assumptions

▶ Desired dynamics mode is known a priori
▶ No access to environment a priori

▶ Only a local state transition data set around start state
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Mode remaining exploration for MBRL - the loop
Learn dynamics model

Find trajectory to xf

δ− mode
remaining?

Execute trajectory

δ− mode exploration

yes
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Experience



Mode remaining exploration for MBRL -
information-based objective

max
π∈Π

H [hk∗(x̄) | x̄,D0:i−1]︸ ︷︷ ︸
joint gating entropy

+

T−1∑
t=1

E

−(xt − xf )
TQ(xt − xf )︸ ︷︷ ︸

state difference

− uT
t Rut︸ ︷︷ ︸

control cost

 (13a)



Mode remaining exploration for MBRL - chance
constraints

Pr(αt = k∗ | x0, u0:t ,α0:t−1 = k∗) ⩾ 1 − δ ∀t ∈ {0, . . . ,T }



Mode remaining exploration for MBRL - iteration 0

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.8

Mode boundary

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

0.8

Mode boundary

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary

0
.8

Mode boundary

Observations



Mode remaining exploration for MBRL - iteration 0

−2 0 2

x

−2

0

2

y

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

−2 0 2

x

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

Mode boundary

0.8

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary

Mode boundary

0
.8

Dynamics Environment



Mode remaining exploration for MBRL - iteration 0

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.8

Mode boundary

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

0.8

Mode boundary

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary

0
.8

Mode boundary

Observations



Mode remaining exploration for MBRL - iteration 1

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.
8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.
8

Mode boundary

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

0.
8
Mode boundary

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary

0
.8

Mode boundary

Observations



Mode remaining exploration for MBRL - iteration 1

−2 0 2

x

−2

0

2

y

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.
8

−2 0 2

x

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.
8

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

Mode boundary

0.
8

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary

Mode boundary

0
.8

Dynamics Environment



Mode remaining exploration for MBRL - iteration 1

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.
8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.
8

Mode boundary

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

0.
8
Mode boundary

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary

0
.8

Mode boundary

Observations



Mode remaining exploration for MBRL - iteration 2

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.
8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.
8

Mode boundary

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

0.
8

Mode boundary

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary0.
8

Mode boundary

Observations



Mode remaining exploration for MBRL - iteration 2

−2 0 2

x

−2

0

2

y

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.
8

−2 0 2

x

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.
8

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

Mode boundary

0.
8

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary

Mode boundary0.
8

Dynamics Environment



Mode remaining exploration for MBRL - iteration 2

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.
8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.
8

Mode boundary

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

0.
8

Mode boundary

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary0.
8

Mode boundary

Observations



Mode remaining exploration for MBRL - iteration 3

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.8

Mode boundary

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

0
.8

Mode boundary

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary0
.8

Mode boundary

Observations



Mode remaining exploration for MBRL - iteration 3

−2 0 2

x

−2

0

2

y

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

−2 0 2

x

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

Mode boundary

0
.8

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary

Mode boundary0
.8

Dynamics Environment



Mode remaining exploration for MBRL - iteration 3

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.8

Mode boundary

0.0 0.1 0.2 0.3 0.4 0.5
Pr(α = 1 | x)

Mode boundary

0
.8

Mode boundary

0.45 0.55 0.65 0.75 0.85 0.95
Pr(α = 2 | x)

Mode boundary0
.8

Mode boundary

Observations



Mode remaining exploration for MBRL - iteration 4

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.8

0.8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.8

0.8

Mode boundary

0.00 0.16 0.32 0.48 0.64 0.80
Pr(α = 1 | x)

Mode boundary

0.
8

0
.8

Mode boundary

0.24 0.40 0.56 0.72 0.88 1.04
Pr(α = 2 | x)

Mode boundary0.8

0
.8

Mode boundary

Observations



Mode remaining exploration for MBRL - iteration 4

−2 0 2

x

−2

0

2

y

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

0.8

−2 0 2

x

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

0.8

0.00 0.16 0.32 0.48 0.64 0.80
Pr(α = 1 | x)

Mode boundary

Mode boundary

0.
8

0
.8

0.24 0.40 0.56 0.72 0.88 1.04
Pr(α = 2 | x)

Mode boundary

Mode boundary0.8

0
.8

Dynamics Environment



Mode remaining exploration for MBRL - iteration 4

−2 0 2

x

−2

0

2

y

x0

xf

Mode boundary

0.
8

0.8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.
8

0.8

Mode boundary

0.00 0.16 0.32 0.48 0.64 0.80
Pr(α = 1 | x)

Mode boundary

0.
8

0
.8

Mode boundary

0.24 0.40 0.56 0.72 0.88 1.04
Pr(α = 2 | x)

Mode boundary0.8

0
.8

Mode boundary

Observations



And so on, until



And so on, until

−2 0 2

x

−2

0

2

4

y

x0

xf

Mode boundary

0.8

0.8

0.8

Mode boundary

−2 0 2

x

x0

xf

Mode boundary

0.8

0.8

0.8

Mode boundary

0.0 0.2 0.4 0.6 0.8 1.0
Pr(α = 1 | x)

Mode boundary0.8

Mode boundary

0.0 0.2 0.4 0.6 0.8 1.0
Pr(α = 2 | x)

Mode boundary0.8

Mode boundary

Observations



Future work

Bayesian treatment of inducing inputs

Dynamically add inducing points during exploration

Exploration guarantees

External sensing / higher dimensional inputs

Real-time feedback control, e.g. learn a policy

Better information criterion?
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What’s next

MBRL with BNN dynamics

▶ Compare Laplace / MC dropout / ensembles / BNN posterior via sampling

▶ Visualise epistemic uncertainty e.g. position vs angle for cartpole

▶ When do ensembles fail?
▶ When does Laplace approx fail?

▶ Due to unimodal posterior?
▶ Idea Approximate posterior as Gaussian mixture?

Multi-step dynamics models

▶ If multi-step models can outperform single-step models
▶ And, BNNs (e.g. Laplace) can work for MBRL
▶ Idea use marginal likelihood to set multi-step model’s horizon?
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What’s next

Adaptivity in MBRL, i.e. switching reward functions

▶ Latent dynamics learn reward functions from latent, e.g. rθ : Z×A → R
▶ PlaNet/DreamerV2/MuZero fail when changing reward function

▶ Replay buffers lead to interference from old task
▶ Clearing replay buffer leads to catastrophic forgetting
▶ Idea Place K-priors2 on dynamics?

[2] Khan et al. “Knowledge-Adaptation Priors”. 2021.
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What’s next
Safety function c : X×A → {0 = safe, 1 = unsafe}

Idea 1 Learn safety function using BNN, e.g. cθ : X×A → {0, 1}

▶ Probabilistic constraints

T∏
t=1

Pr(ct = 0 | xt , ut ) ⩾ 1 − δ (14)

▶ which consider epistemic uncertainty of learned constraints function: p(θ | D)

Pr(ct = 0 | xt ,ut ) =

∫
Pr(ct = 0 | xt ,ut , θ)p(θ | D)dθ (15)

▶ Can be extended to latent space dynamics models, e.g. cθ : Z×A → {0, 1}
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What’s Next
Extending Bayesian Active Learning Disagreement3 to RL

In action value function space?

▶ Learn Q function qθ : X×A → R

π = arg max
ut

qθ(xt , ut )︸ ︷︷ ︸
greedy

+H [qθ(xt , ut ) | xt , ut ,D0:i ] − Eθ∼p(θ|D0:i ) [H [qθ(xt , ut ) | xt , ut , θ]]︸ ︷︷ ︸
exploration

.

(16)

Or in reward space?

▶ Learn reward rθ : X×A → R

r ′(xt , ut ) = rθ(xt , ut )︸ ︷︷ ︸
greedy

+H [rθ(xt , ut ) | xt , utD0:i ] − Eθ∼p(θ|D0:i ) [H [rθ(xt , ut ) | xt , ut , θ]]︸ ︷︷ ︸
exploration

.

(17)

[1] Houlsby et al. “Bayesian Active Learning for Classification and Preference Learning”. 2011.
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Motorcycle dataset | 2 vs 3 experts | Posterior
samples
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Motorcycle dataset | 2 vs 3 experts | Experts’ GP
posteriors
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Motorcycle dataset | 2 vs 3 experts | Mixing
probabilities
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Motorcycle dataset | 2 vs 3 experts | Gating GP
posteriors
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