PhD Thesis: Bayesian Learning for Control in Multimodal Dynamical Systems

Aidan Scannell | Carl Henrik Ek | Arthur Richards
$8^{\text {th }}$ September 2022

Mode 2

安
Start
Mode 1

Mode 2
なす
Start
Mode 1

\star
 Target

Start

Mode 1

Mode 2

76
Start
Mode 1

Goals

Goal 1 Navigate to the target state x_{f}
Goal 2 Remain in the operable, desired dynamics mode k^{*}

Mode remaining navigation problem

$$
\begin{equation*}
\min _{\pi \in \Pi} \sum_{t=0}^{T} c\left(\mathrm{x}_{t}, \pi\left(\mathrm{x}_{t}, t\right)\right) \tag{1a}
\end{equation*}
$$

s.t.

Mode remaining navigation problem

$$
\begin{array}{ll}
\min _{\pi \in \Pi} & \sum_{t=0}^{T} c\left(\mathrm{x}_{t}, \pi\left(\mathrm{x}_{t}, t\right)\right) \\
\text { s.t. } \\
\quad \mathrm{x}_{0}=\mathrm{x}_{0} \tag{1d}
\end{array}
$$

Mode remaining navigation problem

$$
\begin{array}{ll}
\min _{\pi \in \Pi} & \sum_{t=0}^{T} c\left(\mathrm{x}_{t}, \pi\left(\mathrm{x}_{t}, t\right)\right) \\
\text { s.t. } & \\
& \\
& \mathrm{x}_{0}=\mathrm{x}_{0} \tag{1e}\\
& \mathrm{x}_{T}=\mathrm{x}_{f}
\end{array}
$$

Mode remaining navigation problem

$$
\begin{align*}
\min _{\pi \in \Pi} & \sum_{t=0}^{T} c\left(\mathrm{x}_{t}, \pi\left(\mathrm{x}_{t}, t\right)\right) \tag{1a}\\
\text { s.t. } & \mathrm{x}_{t+1}=f_{k}\left(\mathrm{x}_{t}, \pi\left(\mathrm{x}_{t}, t\right)\right)+\epsilon_{k}, \quad \text { if } \alpha\left(\mathrm{x}_{t}\right)=k \quad \forall t \in\{0, \ldots, T-1\} \tag{1b}\\
& \tag{1c}\\
& \mathrm{x}_{0}=\mathrm{x}_{0} \\
& \mathrm{x}_{T}=\mathrm{x}_{f}
\end{align*}
$$

Mode remaining navigation problem

$$
\begin{array}{rll}
\min _{\pi \in \Pi} & \sum_{t=0}^{T} c\left(\mathrm{x}_{t}, \pi\left(\mathrm{x}_{t}, t\right)\right) & \\
\text { s.t. } & \mathrm{x}_{t+1}=f_{k}\left(\mathrm{x}_{t}, \pi\left(\mathrm{x}_{t}, t\right)\right)+\boldsymbol{\epsilon}_{k}, \quad \text { if } \alpha\left(\mathrm{x}_{t}\right)=k & \forall t \in\{0, \ldots, T-1\} \\
& \alpha\left(\mathrm{x}_{t}\right)=k^{*} & \forall t \in\{0, \ldots, T-1\} \\
& \mathrm{x}_{0}=\mathrm{x}_{0} & \\
& \mathrm{x}_{T}=\mathrm{x}_{f} &
\end{array}
$$

But dynamics are not known a priori...

$$
\begin{array}{rlr}
\min _{\pi \in \Pi} & \sum_{t=0}^{T} c\left(\mathrm{x}_{t}, \pi\left(\mathrm{x}_{t}, t\right)\right) & \\
\text { s.t. } & \mathrm{x}_{t+1}=f_{k}\left(\mathrm{x}_{t}, \pi\left(\mathrm{x}_{t}, t\right)\right)+\boldsymbol{\epsilon}_{k}, \quad \text { if } \alpha\left(\mathrm{x}_{t}\right)=k & \forall t \in\{0, \ldots, T-1\} \\
& \alpha\left(\mathrm{x}_{t}\right)=k^{*} & \forall t \in\{0, \ldots, T-1\} \\
& \mathrm{x}_{0}=\mathrm{x}_{0} & \\
& \mathrm{x}_{T}=\mathrm{x}_{f} &
\end{array}
$$

Solve using model-based reinforcement learning?

Contributions

1. Model learning

Contributions

1. Model learning
2. Mode remaining trajectory optimisation

Contributions

1. Model learning
2. Mode remaining trajectory optimisation

- via latent geometry

Contributions

1. Model learning
2. Mode remaining trajectory optimisation

- via latent geometry
- control as inference

Contributions

1. Model learning
2. Mode remaining trajectory optimisation

- via latent geometry
- control as inference

3. Mode remaining exploration for model-based reinforcement learning

Model learning - Gaussian processes don't work...

Model learning - mixture models?

MoE marginal likelihood

$$
\begin{equation*}
p(\mathrm{y} \mid \mathrm{X}, \boldsymbol{\theta}, \boldsymbol{\phi})=\prod_{n=1}^{N} \sum_{k=1}^{K} \underbrace{\operatorname{Pr}\left(\alpha_{n}=k \mid \mathbf{x}_{n}, \boldsymbol{\phi}\right)}_{\text {gating network }} \underbrace{p\left(y_{n} \mid \alpha_{n}=k, \mathbf{x}_{n}, \boldsymbol{\theta}_{k}\right)}_{\text {expert } k}, \tag{3}
\end{equation*}
$$

Model learning - mixtures of nonparametric experts

Model learning - Parameterise the nonparametric model?

* Like a sparse GP parameterises a GP...

Model learning - Parameterise the nonparametric model?

Le Like a sparse GP parameterises a GP...
\mathbb{L}^{*} GP prior where $\mathrm{X}_{k}=\left\{\mathrm{x}_{n}: \alpha_{t}=k\right\}$

$$
f_{k}\left(\mathrm{X}_{k}\right) \sim \mathcal{N}\left(\mu_{k}\left(\mathrm{X}_{k}\right), k_{k}\left(\mathrm{X}_{k}, \mathrm{X}_{k}\right)\right)
$$

Model learning - Parameterise the nonparametric model?

Le Like a sparse GP parameterises a GP...
\mathbb{L}^{*} GP prior where $\mathrm{X}_{k}=\left\{\mathrm{x}_{n}: \alpha_{t}=k\right\}$

$$
f_{k}\left(\mathrm{X}_{k}\right) \sim \mathcal{N}\left(\mu_{k}\left(\mathrm{X}_{k}\right), k_{k}\left(\mathrm{X}_{k}, \mathrm{X}_{k}\right)\right)
$$

\mathbb{K} Augment with inducing points

$$
f_{k}\left(\boldsymbol{\zeta}_{k}\right) \sim \mathcal{N}\left(\mu_{k}\left(\boldsymbol{\zeta}_{k}\right), k_{k}\left(\boldsymbol{\zeta}_{k}, \boldsymbol{\zeta}_{k}\right)\right)
$$

Model learning - Parameterise the nonparametric model?

* Like a sparse GP parameterises a GP...
\mathbb{L}^{*} GP prior where $\mathrm{X}_{k}=\left\{\mathrm{x}_{n}: \alpha_{t}=k\right\}$

$$
f_{k}\left(\mathrm{X}_{k}\right) \sim \mathcal{N}\left(\mu_{k}\left(\mathrm{X}_{k}\right), k_{k}\left(\mathrm{X}_{k}, \mathrm{X}_{k}\right)\right)
$$

\mathbb{K} Augment with inducing points

$$
f_{k}\left(\boldsymbol{\zeta}_{k}\right) \sim \mathcal{N}\left(\mu_{k}\left(\boldsymbol{\zeta}_{k}\right), k_{k}\left(\boldsymbol{\zeta}_{k}, \boldsymbol{\zeta}_{k}\right)\right)
$$

F FITC for MoGPE?

$$
p(\mathrm{y} \mid \mathrm{f}(\boldsymbol{\zeta})) \approx \prod_{n=1}^{N} p\left(y_{n} \mid \mathrm{f}(\boldsymbol{\zeta})\right)=\prod_{n=1}^{N} \sum_{k=1}^{K} \operatorname{Pr}\left(\alpha_{n}=k \mid \mathrm{x}_{n}, \boldsymbol{\phi}\right) \prod_{k=1}^{K} p\left(y_{n} \mid f_{k}\left(\boldsymbol{\zeta}_{k}\right)\right)
$$

Model learning - Parameterise the nonparametric model?

* Like a sparse GP parameterises a GP...
\mathbb{L}^{*} GP prior where $\mathrm{X}_{k}=\left\{\mathrm{x}_{n}: \alpha_{t}=k\right\}$

$$
f_{k}\left(\mathrm{X}_{k}\right) \sim \mathcal{N}\left(\mu_{k}\left(\mathrm{X}_{k}\right), k_{k}\left(\mathrm{X}_{k}, \mathrm{X}_{k}\right)\right)
$$

\mathbb{K} Augment with inducing points

$$
f_{k}\left(\boldsymbol{\zeta}_{k}\right) \sim \mathcal{N}\left(\mu_{k}\left(\boldsymbol{\zeta}_{k}\right), k_{k}\left(\boldsymbol{\zeta}_{k}, \boldsymbol{\zeta}_{k}\right)\right)
$$

F FITC for MoGPE?

$$
p(\mathrm{y} \mid \mathrm{f}(\boldsymbol{\zeta})) \approx \prod_{n=1}^{N} p\left(y_{n} \mid \mathrm{f}(\boldsymbol{\zeta})\right)=\prod_{n=1}^{N} \sum_{k=1}^{K} \operatorname{Pr}\left(\alpha_{n}=k \mid \mathrm{x}_{n}, \boldsymbol{\phi}\right) \prod_{k=1}^{K} p\left(y_{n} \mid f_{k}\left(\boldsymbol{\zeta}_{k}\right)\right)
$$

\mathbb{H} Assumes inducing variables $\left\{f_{k}\left(\boldsymbol{\zeta}_{k}\right)\right\}_{k=1}^{K}$, are a sufficient statistic for latent function values $\left\{f_{k}\left(\mathrm{X}_{k}\right)\right\}_{k=1}^{K}$ AND the set of assignments $\boldsymbol{\alpha}$.

Model learning - Parameterise the nonparametric model?

\mathbb{K} Approximate marinal likelihood

$$
\begin{equation*}
p(\mathrm{y} \mid \mathrm{X}) \approx \mathbb{E}_{p(\mathrm{~h}(\boldsymbol{\xi})) p(\mathrm{f}(\boldsymbol{\zeta}))}\left[\prod_{n=1}^{N} \sum_{k=1}^{K} \operatorname{Pr}\left(\alpha_{n}=k \mid \mathrm{h}(\boldsymbol{\xi})\right) p\left(y_{n} \mid f_{k}\left(\boldsymbol{\zeta}_{k}\right)\right)\right] \tag{4}
\end{equation*}
$$

Model learning - latent spaces for planning

Model learning - latent spaces for planning

\square Environment boundary

Gating function $h_{2}(\mathbf{x})$ variance

24	0	4	8	12	16	20	24	28	32

///, No observations

Mode remaining control

Goals

Mode remaining control

Hoals

- Navigate to the target state x_{f}

Mode remaining control

K Goals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode

Mode remaining control

K Goals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode
* Assumptions

Mode remaining control

(ta Goals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode

歯 Assumptions

- Desired dynamics mode is known a priori

Mode remaining control

(ta Goals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode

歯 Assumptions

- Desired dynamics mode is known a priori
- Prior access to environment

Mode remaining control

Hoals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode

踥 Assumptions

- Desired dynamics mode is known a priori
- Prior access to environment
- Such that a state transition data set \mathcal{D} has been collected

Mode remaining control - via latent geometry

Mode remaining control - via latent geometry

\mathbb{K}^{*} Desired mode's gating function $h_{k^{*}}: X \rightarrow \mathbb{R}$

Mode remaining control - via latent geometry

\mathbb{L} Desired mode's gating function $h_{k^{*}}: \mathcal{X} \rightarrow \mathbb{R}$

* State trajectory $\overline{\mathrm{x}}:\left[t_{0}, t_{f}\right] \rightarrow X$

Mode remaining control - via latent geometry

\mathbb{L} Desired mode's gating function $h_{k^{*}}: \mathcal{X} \rightarrow \mathbb{R}$

* State trajectory $\overline{\mathrm{x}}:\left[t_{0}, t_{f}\right] \rightarrow X$
\mathbb{L}^{2} Length minimising trajectories encode mode remaining behaviour

$$
\begin{equation*}
\min \operatorname{Length}\left(h_{k^{*}}(\overline{\mathrm{x}})\right)=\min \int_{t_{0}}^{t_{f}}\|\dot{\mathrm{x}}(t)\|_{\mathbf{G}(\mathbf{x}(t))} \mathrm{d} t \tag{5}
\end{equation*}
$$

where,

$$
\begin{equation*}
\|\dot{\mathrm{x}}(t)\|_{\mathrm{G}(\mathrm{x}(t))}=\sqrt{\dot{\mathrm{x}}(t) \mathrm{G}_{\mathrm{x}_{t}} \dot{\mathrm{x}}(t)} \tag{6}
\end{equation*}
$$

Mode remaining control - via latent geometry

\mathbb{K}^{*} Desired mode's gating function $h_{k^{*}}: \mathcal{X} \rightarrow \mathbb{R}$
${ }^{2}$ State trajectory $\overline{\mathrm{x}}:\left[t_{0}, t_{f}\right] \rightarrow X$
\mathbb{L}^{*} Length minimising trajectories encode mode remaining behaviour

$$
\begin{equation*}
\min \operatorname{Length}\left(h_{k^{*}}(\overline{\mathrm{x}})\right)=\min \int_{t_{0}}^{t_{f}}\|\dot{\mathrm{x}}(t)\|_{\mathbf{G}(\mathbf{x}(t))} \mathrm{d} t \tag{5}
\end{equation*}
$$

where,

$$
\begin{equation*}
\|\dot{\mathrm{x}}(t)\|_{\mathrm{G}(\mathrm{x}(t))}=\sqrt{\dot{\mathrm{x}}(t) \mathrm{G}_{\mathrm{x}_{t}} \dot{\mathrm{x}}(t)} \tag{6}
\end{equation*}
$$

骖 But ignores epistemic uncertainty...

Mode remaining control - via latent geometry

K Metric depends on Jacobian ${ }^{1}$

$$
\begin{equation*}
\mathrm{G}_{\mathrm{x}_{t}}=\mathrm{J}_{\mathrm{x}_{t}}^{T} \mathrm{~J}_{\mathrm{x}_{t}} \tag{7}
\end{equation*}
$$

[3] Tosi et al. "Metrics for Probabilistic Geometries". 2014.

Mode remaining control - via latent geometry

\mathbb{H}^{2} Metric depends on Jacobian ${ }^{1}$

$$
\begin{equation*}
\mathrm{G}_{\mathrm{x}_{t}}=\mathrm{J}_{\mathrm{x}_{t}}^{T} \mathrm{~J}_{\mathrm{x}_{t}} \tag{7}
\end{equation*}
$$

\mathbb{H}^{2} which is Normally distributed

$$
\begin{equation*}
\mathrm{J} \sim \mathcal{N}\left(\boldsymbol{\mu}_{J}, \boldsymbol{\Sigma}_{J}\right) \tag{8}
\end{equation*}
$$

[3] Tosi et al. "Metrics for Probabilistic Geometries". 2014.

Mode remaining control - via latent geometry

\mathbb{H}^{2} Metric depends on Jacobian ${ }^{1}$

$$
\begin{equation*}
\mathrm{G}_{\mathrm{x}_{t}}=\mathrm{J}_{\mathbf{x}_{t}}^{T} \mathrm{~J}_{\mathrm{x}_{t}} \tag{7}
\end{equation*}
$$

W^{*} which is Normally distributed

$$
\begin{equation*}
\mathrm{J} \sim \mathcal{N}\left(\boldsymbol{\mu}_{J}, \boldsymbol{\Sigma}_{J}\right) \tag{8}
\end{equation*}
$$

* so metric follows non-central Wishart distribution

$$
\begin{equation*}
\mathrm{G} \sim \mathcal{W}_{D}\left(p, \boldsymbol{\Sigma}_{J}, \mathbb{E}\left[\mathrm{~J}^{T}\right] \mathbb{E}[\mathrm{J}]\right) \tag{9}
\end{equation*}
$$

[3] Tosi et al. "Metrics for Probabilistic Geometries". 2014.

Mode remaining control - via latent geometry

${ }^{*}$ Metric depends on Jacobian ${ }^{1}$

$$
\begin{equation*}
\mathrm{G}_{\mathrm{x}_{t}}=\mathrm{J}_{\mathbf{x}_{t}}^{T} \mathrm{~J}_{\mathrm{x}_{t}} \tag{7}
\end{equation*}
$$

* which is Normally distributed

$$
\begin{equation*}
\mathrm{J} \sim \mathcal{N}\left(\boldsymbol{\mu}_{J}, \boldsymbol{\Sigma}_{J}\right) \tag{8}
\end{equation*}
$$

頻 so metric follows non-central Wishart distribution

$$
\begin{equation*}
\mathrm{G} \sim \mathcal{W}_{D}\left(p, \boldsymbol{\Sigma}_{J}, \mathbb{E}\left[\mathrm{~J}^{T}\right] \mathbb{E}[\mathrm{J}]\right) \tag{9}
\end{equation*}
$$

* Expected metric increases length of trajectories in regions of high epistemic uncertainty

$$
\begin{equation*}
\mathbb{E}[\mathrm{G}]=\mathbb{E}\left[\mathrm{J}^{T}\right] \mathbb{E}[\mathrm{J}]+\lambda \boldsymbol{\Sigma}_{J} \tag{10}
\end{equation*}
$$

[3] Tosi et al. "Metrics for Probabilistic Geometries". 2014.

Mode remaining control as probabilistic inference

$$
\operatorname{Pr}\left(\mathcal{O}_{t}=1 \mid \mathrm{x}_{t}, \mathrm{u}_{t}\right) \propto \exp \left(-\gamma c\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right)\right)
$$

Mode remaining control as probabilistic inference \mathbb{H}_{k} Goal $\mathrm{p}\left(\overline{\mathrm{x}}, \overline{\mathrm{u}} \mid \mathrm{x}_{0}, \mathcal{O}_{0: T}=1, \alpha_{0: T}=k^{*}\right)$

Mode remaining control as probabilistic inference

\mathbb{L} Goal $\mathrm{p}\left(\overline{\mathrm{x}}, \overline{\mathrm{u}} \mid \mathrm{x}_{0}, \mathcal{O}_{0: T}=1, \alpha_{0: T}=k^{*}\right)$
比 Variational inference (lower bound $p\left(\mathcal{O}_{0: T}=1, \alpha_{0: T}=k^{*} \mid \mathrm{x}_{0}\right)$)

$$
\begin{align*}
\mathcal{L}_{\text {mode }}= & -\sum_{t=0}^{T} \underbrace{\mathbb{E}_{q\left(\mathrm{x}_{t} \mid \mathrm{x}_{0}, \alpha_{0: T}=k_{0: t-1}^{*}\right) q\left(\mathrm{u}_{t}\right)}\left[c\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right)\right]}_{\text {expected cost }} \tag{11}\\
& +\sum_{t=0}^{T} \underbrace{\mathbb{E}_{q\left(\mathrm{x}_{t} \mid \mathrm{x}_{0}, \alpha_{0: T}=k_{0: t-1}^{*}\right)}\left[\log \operatorname{Pr}\left(\alpha_{t}=k^{*} \mid \mathrm{x}_{t}\right)\right]}_{\text {mode remaining term }} \\
& +\sum_{t=0}^{T-1} \underbrace{H\left[\mathrm{u}_{t}\right]}_{\text {entropy }} \tag{12}
\end{align*}
$$

Environment $1 \operatorname{Pr}(\alpha=2 \mid \mathbf{x}) \quad$ Environment $2 \operatorname{Pr}(\alpha=2 \mid \mathbf{x})$

Environment $2 \mathbb{E}\left[h_{2}(\mathbf{x})\right]$

\rightarrow	IG $\lambda=20.0$	\rightarrow	IG $\lambda=1.0$ (mid point)	\cdots	DRE $\lambda=5.0$
\rightarrow	IG $\lambda=1.0$	\cdots	DRE $\lambda=0.5$	\cdots	MRCaI (Dirac)
\rightarrow	IG $\lambda=0.5$	\cdots	DRE $\lambda=20.0$	\cdots	MRCaI (gauss)
\rightarrow	IG $\lambda=5.0$	*	DRE $\lambda=1.0$		

Mode remaining exploration for MBRL

K Goals

Mode remaining exploration for MBRL

K Goals

- Navigate to the target state x_{f}

Mode remaining exploration for MBRL

K Goals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode

Mode remaining exploration for MBRL

K Goals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode

12 Assumptions

Mode remaining exploration for MBRL

貾 Goals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode

比 Assumptions

- Desired dynamics mode is known a priori

Mode remaining exploration for MBRL

K Goals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode

比 Assumptions

- Desired dynamics mode is known a priori
- No access to environment a priori

Mode remaining exploration for MBRL

曻 Goals

- Navigate to the target state x_{f}
- Remain in desired dynamics mode

比 Assumptions

- Desired dynamics mode is known a priori
- No access to environment a priori
- Only a local state transition data set around start state

Mode remaining exploration for MBRL - the loop

Mode remaining exploration for MBRL -information-based objective

$$
\begin{equation*}
\max _{\pi \in \Pi} \underbrace{\mathcal{H}\left[h_{k^{*}}(\overline{\mathrm{x}}) \mid \overline{\mathrm{x}}, \mathcal{D}_{0: i-1}\right]}_{\text {joint gating entropy }}+\sum_{t=1}^{T-1} \mathbb{E}[\underbrace{-\left(\mathrm{x}_{t}-\mathrm{x}_{f}\right)^{T} \mathrm{Q}\left(\mathrm{x}_{t}-\mathrm{x}_{f}\right)}_{\text {state difference }}-\underbrace{\mathrm{u}_{t}^{T} R \mathrm{u}_{t}}_{\text {control cost }}] \tag{13a}
\end{equation*}
$$

Mode remaining exploration for MBRL - chance constraints

$$
\operatorname{Pr}\left(\alpha_{t}=k^{*} \mid \mathrm{x}_{0}, \mathrm{u}_{0: t}, \boldsymbol{\alpha}_{0: t-1}=k^{*}\right) \geqslant 1-\delta \quad \forall t \in\{0, \ldots, T\}
$$

Mode remaining exploration for MBRL - iteration 0

Mode remaining exploration for MBRL - iteration 0

Mode remaining exploration for MBRL - iteration 0

Mode remaining exploration for MBRL - iteration 1

Mode remaining exploration for MBRL - iteration 1

Mode remaining exploration for MBRL - iteration 1

Mode remaining exploration for MBRL - iteration 2

Mode remaining exploration for MBRL - iteration 2

Mode remaining exploration for MBRL - iteration 2

Mode remaining exploration for MBRL - iteration 3

Mode remaining exploration for MBRL - iteration 3

Mode remaining exploration for MBRL - iteration 3

Mode remaining exploration for MBRL - iteration 4

Mode remaining exploration for MBRL - iteration 4

Mode remaining exploration for MBRL - iteration 4

And so on, until

And so on, until

Future work

\mathbb{H}_{*} Bayesian treatment of inducing inputs

Future work

* Bayesian treatment of inducing inputs
${ }^{2}$ Dynamically add inducing points during exploration

Future work

桃 Bayesian treatment of inducing inputs
比 Dynamically add inducing points during exploration
比 Exploration guarantees

Future work

比 Bayesian treatment of inducing inputs
比 Dynamically add inducing points during exploration
比 Exploration guarantees
比 External sensing／higher dimensional inputs

Future work

桃 Bayesian treatment of inducing inputs
比 Dynamically add inducing points during exploration
比 Exploration guarantees
比 External sensing／higher dimensional inputs
\mathbb{V}^{*} Real－time feedback control，e．g．learn a policy

Future work

桃 Bayesian treatment of inducing inputs
比 Dynamically add inducing points during exploration
比 Exploration guarantees
比 External sensing／higher dimensional inputs
虔 Real－time feedback control，e．g．learn a policy
Better information criterion？

Observations

What's next

K MBRL with BNN dynamics

What's next

${ }^{*}$ MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling

What's next

\mathbb{V}^{2} MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling
- Visualise epistemic uncertainty e.g. position vs angle for cartpole

What's next

${ }^{*}$ MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling
- Visualise epistemic uncertainty e.g. position vs angle for cartpole
- When do ensembles fail?

What's next

\mathbb{V}^{2} MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling
- Visualise epistemic uncertainty e.g. position vs angle for cartpole
- When do ensembles fail?
- When does Laplace approx fail?

What's next

${ }^{*}$ MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling
- Visualise epistemic uncertainty e.g. position vs angle for cartpole
- When do ensembles fail?
- When does Laplace approx fail?
- Due to unimodal posterior?

What's next

${ }^{*}$ MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling
- Visualise epistemic uncertainty e.g. position vs angle for cartpole
- When do ensembles fail?
- When does Laplace approx fail?
- Due to unimodal posterior?
- Idea Approximate posterior as Gaussian mixture?

What's next

\mathbb{L}^{2} MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling
- Visualise epistemic uncertainty e.g. position vs angle for cartpole
- When do ensembles fail?
- When does Laplace approx fail?
- Due to unimodal posterior?
- Idea Approximate posterior as Gaussian mixture?
${ }^{2}$ Multi-step dynamics models

What's next

${ }^{*}$ MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling
- Visualise epistemic uncertainty e.g. position vs angle for cartpole
- When do ensembles fail?
- When does Laplace approx fail?
- Due to unimodal posterior?
- Idea Approximate posterior as Gaussian mixture?
${ }^{2}$ Multi-step dynamics models
- If multi-step models can outperform single-step models

What's next

${ }^{*}$ MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling
- Visualise epistemic uncertainty e.g. position vs angle for cartpole
- When do ensembles fail?
- When does Laplace approx fail?
- Due to unimodal posterior?
- Idea Approximate posterior as Gaussian mixture?
${ }^{2}$ Multi-step dynamics models
- If multi-step models can outperform single-step models
- And, BNNs (e.g. Laplace) can work for MBRL

What's next

${ }^{*}$ MBRL with BNN dynamics

- Compare Laplace / MC dropout / ensembles / BNN posterior via sampling
- Visualise epistemic uncertainty e.g. position vs angle for cartpole
- When do ensembles fail?
- When does Laplace approx fail?
- Due to unimodal posterior?
- Idea Approximate posterior as Gaussian mixture?
${ }^{2}$ Multi-step dynamics models
- If multi-step models can outperform single-step models
- And, BNNs (e.g. Laplace) can work for MBRL
- Idea use marginal likelihood to set multi-step model's horizon?

What's next

${ }^{*}$ Adaptivity in MBRL, i.e. switching reward functions
[2] Khan et al. "Knowledge-Adaptation Priors". 2021.

What's next

${ }^{2}$ Adaptivity in MBRL, i.e. switching reward functions

- Latent dynamics learn reward functions from latent, e.g. $r_{\theta}: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}$
[2] Khan et al. "Knowledge-Adaptation Priors". 2021.

What's next

\mathbb{K}^{*} Adaptivity in MBRL, i.e. switching reward functions

- Latent dynamics learn reward functions from latent, e.g. $r_{\theta}: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}$
- PlaNet/DreamerV2/MuZero fail when changing reward function
[2] Khan et al. "Knowledge-Adaptation Priors". 2021.

What's next

\mathbb{H}^{*} Adaptivity in MBRL, i.e. switching reward functions

- Latent dynamics learn reward functions from latent, e.g. $r_{\theta}: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}$
- PlaNet/DreamerV2/MuZero fail when changing reward function
- Replay buffers lead to interference from old task
[2] Khan et al. "Knowledge-Adaptation Priors". 2021.

What's next

\mathbb{H}^{*} Adaptivity in MBRL, i.e. switching reward functions

- Latent dynamics learn reward functions from latent, e.g. $r_{\theta}: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}$
- PlaNet/DreamerV2/MuZero fail when changing reward function
- Replay buffers lead to interference from old task
- Clearing replay buffer leads to catastrophic forgetting
[2] Khan et al. "Knowledge-Adaptation Priors". 2021.

What's next

${ }^{*}$ Adaptivity in MBRL, i.e. switching reward functions

- Latent dynamics learn reward functions from latent, e.g. $r_{\theta}: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}$
- PlaNet/DreamerV2/MuZero fail when changing reward function
- Replay buffers lead to interference from old task
- Clearing replay buffer leads to catastrophic forgetting
- Idea Place K-priors ${ }^{2}$ on dynamics?
[2] Khan et al. "Knowledge-Adaptation Priors". 2021.

What's next

朝 Safety function $c: X \times \mathcal{A} \rightarrow\{0=$ safe, $1=$ unsafe $\}$

What's next

* Safety function $c: \mathcal{X} \times \mathcal{A} \rightarrow\{0=$ safe, $1=$ unsafe $\}$
ψ^{*} Idea 1 Learn safety function using BNN, e.g. $c_{\theta}: X \times \mathcal{A} \rightarrow\{0,1\}$

What's next

就 Safety function $c: X \times \mathcal{A} \rightarrow\{0=$ safe, $1=$ unsafe $\}$
${ }^{2}$ Idea 1 Learn safety function using BNN, e.g. $c_{\theta}: \mathcal{X} \times \mathcal{A} \rightarrow\{0,1\}$

- Probabilistic constraints

$$
\begin{equation*}
\prod_{t=1}^{T} \operatorname{Pr}\left(c_{t}=0 \mid \mathrm{x}_{t}, \mathrm{u}_{t}\right) \geqslant 1-\delta \tag{14}
\end{equation*}
$$

What's next

\mathbb{L}^{2} Safety function $c: \mathcal{X} \times \mathcal{A} \rightarrow\{0=$ safe, $1=$ unsafe $\}$
\mathbb{H}^{2} Idea 1 Learn safety function using BNN, e.g. $c_{\theta}: \mathcal{X} \times \mathcal{A} \rightarrow\{0,1\}$

- Probabilistic constraints

$$
\begin{equation*}
\prod_{t=1}^{T} \operatorname{Pr}\left(c_{t}=0 \mid \mathrm{x}_{t}, \mathrm{u}_{t}\right) \geqslant 1-\delta \tag{14}
\end{equation*}
$$

- which consider epistemic uncertainty of learned constraints function: $p(\theta \mid \mathcal{D})$

$$
\begin{equation*}
\operatorname{Pr}\left(c_{t}=0 \mid \mathrm{x}_{t}, \mathrm{u}_{t}\right)=\int \operatorname{Pr}\left(c_{t}=0 \mid \mathrm{x}_{t}, \mathrm{u}_{t}, \theta\right) p(\theta \mid \mathcal{D}) \mathrm{d} \theta \tag{15}
\end{equation*}
$$

What's next

* Safety function $c: \mathcal{X} \times \mathcal{A} \rightarrow\{0=$ safe, $1=$ unsafe $\}$
\mathbb{H}^{2} Idea 1 Learn safety function using BNN , e.g. $c_{\theta}: \mathcal{X} \times \mathcal{A} \rightarrow\{0,1\}$
- Probabilistic constraints

$$
\begin{equation*}
\prod_{t=1}^{T} \operatorname{Pr}\left(c_{t}=0 \mid \mathrm{x}_{t}, \mathrm{u}_{t}\right) \geqslant 1-\delta \tag{14}
\end{equation*}
$$

- which consider epistemic uncertainty of learned constraints function: $p(\theta \mid \mathcal{D})$

$$
\begin{equation*}
\operatorname{Pr}\left(c_{t}=0 \mid \mathrm{x}_{t}, \mathrm{u}_{t}\right)=\int \operatorname{Pr}\left(c_{t}=0 \mid \mathrm{x}_{t}, \mathrm{u}_{t}, \theta\right) p(\theta \mid \mathcal{D}) \mathrm{d} \theta \tag{15}
\end{equation*}
$$

- Can be extended to latent space dynamics models, e.g. $c_{\theta}: Z \times \mathcal{A} \rightarrow\{0,1\}$

What's Next

Extending Bayesian Active Learning Disagreement ${ }^{3}$ to RL
[1] Houlsby et al. "Bayesian Active Learning for Classification and Preference Learning". 2011.

What's Next

${ }^{*}$ Extending Bayesian Active Learning Disagreement ${ }^{3}$ to RL
\mathbb{E} In action value function space?
[1] Houlsby et al. "Bayesian Active Learning for Classification and Preference Learning". 2011.

What's Next

\mathbb{L}^{2} Extending Bayesian Active Learning Disagreement ${ }^{3}$ to RL
\mathbb{K} In action value function space?

- Learn Q function $q_{\theta}: X \times \mathcal{A} \rightarrow \mathbb{R}$

$$
\begin{equation*}
\pi=\arg \max _{\mathbf{u}_{t}} \underbrace{q_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right)}_{\text {greedy }}+\underbrace{H\left[q_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right) \mid \mathrm{x}_{t}, \mathrm{u}_{t}, \mathcal{D}_{0: i}\right]-\mathbb{E}_{\theta \sim p\left(\theta \mid \mathcal{D}_{0: i}\right)}\left[H\left[q_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right) \mid \mathrm{x}_{t}, \mathrm{u}_{t}, \theta\right]\right]}_{\text {exploration }} \tag{16}
\end{equation*}
$$

[1] Houlsby et al. "Bayesian Active Learning for Classification and Preference Learning". 2011.

What's Next

\mathbb{L}^{2} Extending Bayesian Active Learning Disagreement ${ }^{3}$ to RL
\mathbb{K} In action value function space?

- Learn Q function $q_{\theta}: X \times \mathcal{A} \rightarrow \mathbb{R}$

$$
\begin{equation*}
\pi=\arg \max _{\mathbf{u}_{t}} \underbrace{q_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right)}_{\text {greedy }}+\underbrace{H\left[q_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right) \mid \mathrm{x}_{t}, \mathrm{u}_{t}, \mathcal{D}_{0: i}\right]-\mathbb{E}_{\theta \sim p\left(\theta \mid \mathcal{D}_{0: i}\right)}\left[H\left[q_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right) \mid \mathrm{x}_{t}, \mathrm{u}_{t}, \theta\right]\right]}_{\text {exploration }} \tag{16}
\end{equation*}
$$

W^{*} Or in reward space?
[1] Houlsby et al. "Bayesian Active Learning for Classification and Preference Learning". 2011.

What's Next

\mathbb{L}^{*} Extending Bayesian Active Learning Disagreement ${ }^{3}$ to RL
\mathbb{H} In action value function space?

- Learn Q function $q_{\theta}: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$

$$
\begin{equation*}
\pi=\arg \max _{\mathbf{u}_{t}} \underbrace{q_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right)}_{\text {greedy }}+\underbrace{H\left[q_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right) \mid \mathrm{x}_{t}, \mathrm{u}_{t}, \mathcal{D}_{0: i}\right]-\mathbb{E}_{\theta \sim p\left(\theta \mid \mathcal{D}_{0: i}\right)}\left[H\left[q_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right) \mid \mathrm{x}_{t}, \mathrm{u}_{t}, \theta\right]\right]}_{\text {exploration }} \tag{16}
\end{equation*}
$$

Or in reward space?

- Learn reward $r_{\theta}: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$

$$
\begin{equation*}
r^{\prime}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right)=\underbrace{r_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right)}_{\text {greedy }}+\underbrace{H\left[r_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right) \mid \mathrm{x}_{t}, \mathrm{u}_{t} \mathcal{D}_{0: i}\right]-\mathbb{E}_{\theta \sim p\left(\theta \mid \mathcal{D}_{0: i}\right)}\left[H\left[r_{\theta}\left(\mathrm{x}_{t}, \mathrm{u}_{t}\right) \mid \mathrm{x}_{t}, \mathrm{u}_{t}, \theta\right]\right]}_{\text {exploration }} . \tag{17}
\end{equation*}
$$

[1] Houlsby et al. "Bayesian Active Learning for Classification and Preference Learning". 2011.

Thanks for listening

Questions?
$<_{k}$ all> $<_{k}$ all>
[1] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. "Bayesian Active Learning for Classification and Preference Learning". Dec. 24, 2011. arXiv: 1112.5745 [cs, stat].
[2] Mohammad Emtiyaz E Khan and Siddharth Swaroop. "Knowledge-Adaptation Priors". In: Advances in Neural Information Processing Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 19757-19770.
[3] Alessandra Tosi, Søren Hauberg, Alfredo Vellido, and Neil D Lawrence. "Metrics for Probabilistic Geometries". In: Proceedings of the 30th Conference. Uncertainty in Artificial Intelligence. 2014, pp. 800-808.

Motorcycle dataset | 2 experts vs 3 experts | Mean

Motorcycle dataset | 2 vs 3 experts | Posterior samples

Motorcycle dataset | 2 vs 3 experts | Experts' GP posteriors

Motorcycle dataset | 2 vs 3 experts | Mixing probabilities

Motorcycle dataset | 2 vs 3 experts | Gating GP posteriors

Figure: State difference only $\sum_{t=1}^{T-1} \mathbb{E}\left[-\left(\mathrm{x}_{t}-\mathrm{x}_{f}\right)^{T} \mathrm{Q}\left(\mathrm{x}_{t}-\mathrm{x}_{f}\right)\right]$

