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ABSTRACT

This work attempted to extend BDI agents, in particular AgenSpeak(L) agents, to model and
reason with uncertain information. The extended AgentSpeak(L) language uses epistemic
states to model an agent’s uncertain beliefs about the world. The implemented extended

AgentSpeak(L) language effectively allows agents to model and reason with uncertainty in
a computationally efficient manner. Agents are capable of modelling their beliefs as either
probabilistic or possibilistic compact epistemic states and the implementation of epistemic states
provides a base for easily implementing instantiations of different uncertainty theories, e.g.
Demspter-Shafer theory.

A language L≥ for constructing formulas that can reason over these uncertain beliefs is
detailed. This language is capable of forming sentences of the form: φ is more plausible than
ψ (φ>ψ). This language is used to construct agent’s plan contexts and test goals, which were
previously just a conjunction of literals. This provides the agents with extended reasoning
capabilities. The agent’s belief base was modelled as a Global Uncertain Belief (GUB), acting as a
set of formulas from the language L≥. This enables agents to select applicable plans from the set
of relevant plans by querying if a logical formula is entailed by the GUB.

A development environment for defining and simulating MASs written in the extended
AgentSpeak(L) language is introduced. A simulation environment that a programmer can easily
extend to a specific scenario is detailed. It uses a multi-threaded approach to enable multiple
agents to run on a single machine and ensures that agents act on and perceive an environment
without any thread interference or memory inconsistency issues. All of the work in this project is
then brought together in a mars exploration MAS that demonstrates the extended modelling and
reasoning capabilities as well as the power of the development environment as a whole.

Accompanying code: https://github.com/aidanscannell/uncertain-agentspeak.
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1
INTRODUCTION

Multi-agent systems (MAS) are computer systems which allow multiple decision-making

entities, known as agents, to interact with one another to achieve their predefined goals.

These systems are well suited for environments that dynamically change. This is due

to their ability to respond and interact with their environment to make appropriate decisions

based on their current state (Jennings, Sycara, and Wooldridge 1998).

Intelligent autonomous systems offer great potential, however, the development of systems

that are robust enough to operate in the real-world is extremely difficult. There is currently a lack

of frameworks for modelling and reasoning with uncertainty. Traditional Belief-Desire-Intention

(BDI) architectures for designing and developing intelligent agent systems are less adequate

for modelling uncertain knowledge, beliefs and evidence, whilst the real-world is almost always

pervaded with uncertainty (Kwisthout and Dastani 2006).

Most systems require perfect information in order to operate successfully. In the highly

competitive business world, systems need to be capable of handling complex scenarios where

this is not the case. In real-world scenarios the environment may be dynamic, pervaded with

uncertainty and only provide partial information. The frequency with which these systems are

required to change is also increasing, resulting in architectures and languages that need to

provide reduced complexity as well as specification and modification time (M. Georgeff et al.

1999). Software agents, particularly Belief-Desire-Intention (BDI) agents, provide the essential

tools for dealing with the real world.

There has been significant research in the Multi-Agent System (MAS) field and many logic-

based approaches for representing and reasoning about uncertainty have been proposed. However,

there is currently a lack of implementations and frameworks that allow for combining multiple

approaches when implementing a system (Kern-Isberner and Lukasiewicz 2017).

1



CHAPTER 1. INTRODUCTION

These form the key motivations for conducting research into a development environment for

defining and testing BDI agents that are capable of modelling and reasoning with uncertainty.

1.1 Background

Architectures such as the Belief-Desire-Intention (BDI) architecture (Bratman 1987) allow

dynamic knowledge and beliefs to be explicitly modelled through decomposing a complex problem

into a set of autonomous and interacting agents. BDI agents consist of their own ’Beliefs’, ’Desires’

and ’Intentions’; beliefs model the agent’s understanding of the environment, desires represent

the states that the agent wants to achieve and intentions are the desires that the agent has

acted upon. Using these, the agents are able to respond accordingly to the situations that they

find themselves in. In recent years, Belief-Desire-Intention (BDI) agents have received a great

deal of interest due to their potential for replacing current methods for analysing, designing and

implementing complex, large-scale intelligent systems (Herzig et al. 2017).

Many agent-based programming languages based on the BDI architecture have been proposed

over the years, including Procedural Reasoning System (PRS) (Ingrand, M. P. Georgeff, and Rao

1992), AgentSpeak(L) (Rao 1996) and A Practical Agent Programming Language (2APL) (Dastani

2008). Although these languages have successfully been used to model some modern systems,

they are not well-suited to model more complex systems as they are not able to model or reason

about uncertain information. In most real-world scenarios agent’s beliefs do not take the form of

binary true or false values but rather are uncertain. Uncertainty can arise from many different

sources, for example, sensor noise or incomplete information. The computational complexity of

uncertainty theories extends this issue further as BDI agents rely on reactive behaviour and

most uncertainty theories do not consider tractability.

Uncertain input can be dealt with in different ways: (i) it can act as a constraint that must

be satisfied after belief revision, or (ii) it can be treated as a new belief with an associated

weight. Ma and Liu (2011a) proposed a framework for dealing with uncertainty where new

information from multiple sources is used to strengthen or weaken existing beliefs and not

necessarily cancel out existing beliefs. However, this framework relies on semantic belief change

operators, restricting it’s practical applicability due to it’s computational cost. There have been

approaches suggested that use syntactic operators, however, these are limited to classical beliefs

(Alchourron, Gardenfors, and Makinson 1985; Nebel 1995). There are far less approaches that use

syntactic operators for iterated belief revision. Ordinal Conditional Functions (OCF) are a popular

approach to defining epistemic states (Spohn 1988) and Williams (1995) proposed a syntactic

representation of OCF. However, this representation is not a general framework and leads to

issues when attempting to instantiate into different uncertainty theories. Bauters et al. (2017)

propose an approach for managing different sources of uncertainty in a BDI framework. They

offer a new approach for modelling the beliefs of an agent as well as a novel syntactic approach

2



1.2. RESEARCH CHALLENGES

for revising beliefs with uncertain information. This paper offers the theoretical foundations and

the base for a lot of the work presented here.

There are many implementations of the AgentSpeak(L) agent programming language (Rafael

H. Bordini and Jomi F. Hübner 2006; Machado and R. Bordini 2003a). Jason has become an

extremely popular development environment for defining and simulating AgentSpeak(L) agents.

Jason provides an interpreter for AgentSpeak(L) agents extended with speech acts as well

as an environment for simulating the interactions of multiple agents with each other and

an environment. The lack of tractable syntactic operators for belief revision with uncertain

information has left a significant gap for AgentSpeak(L) interpreters and environments extended

to model and reason with uncertain information.

1.2 Research Challenges

The primary research questions that this work seeks to address are as follows:

1. How can an agent-based programming language extended to model and reason with

uncertain information be implemented as a scalable BDI framework?

2. How should an agent’s belief base be implemented and how should it reason about uncertain

information? What impact does it have on the agent’s beliefs and reasoning capabilities?

3. How can a general simulation environment capable of hosting "extended" agents be devel-

oped? How can application specific environments be developed as an extension of such a

general environment?

4. How can systems be implemented in such a framework and how do they compare to

implementations in existing frameworks? What are the advantages and limitations of an

extended framework?

5. How can a new BDI framework be evaluated with regards to existing frameworks?

1.2.1 Aims and Objectives

The main aims and objectives are detailed below.

A.1 Implement the AgentSpeak(L) programming language.

O.1.1 Study the AgentSpeak(L) agent programming language.

O.1.2 Implement the underlying data types of AgentSpeak(L).

O.1.3 Implement the AgentSpeak(L) interpreter and required mechanisms.

O.1.4 Create a parser that can read files and instantiate AgentSpeak(L) agents.

3



CHAPTER 1. INTRODUCTION

A.2 Extend this implementation for modelling and reasoning with uncertain information.

O.2.1 Study uncertainty modelling in relation to BDI agents.

O.2.2 Extend this implementation to incorporate modelling of uncertain beliefs.

O.2.3 Extend this further to incorporate reasoning about such uncertain beliefs.

A.3 Develop a platform based on the extended language for designing, simulating and testing

Multi-Agent System (MAS)s.

O.3.1 Develop a system that can simulate multiple "extended" agents in a user defined

simulation environment.

O.3.2 Develop a general simulation environment that can host "extended" agents.

A.4 Compare the performance of the extended language with the original.

O.4.1 Construct an example scenario that demonstrates the performance of the extended

framework.

O.4.2 Develop the required agents in the extended language.

O.4.3 Implement the example scenario’s simulation environment by extending the platforms

base environment.

O.4.4 Simulate and analyse the performance of the extended language in the example

scenario.

1.3 Summary

The rest of this document will be outlined as follows; a review of relevant literature is presented

in Chapter 2, first introducing the BDI architecture and detailing the AgentSpeak(L) language.

It will then introduce probability theory and possibility theory, including how uncertainty has

previously been integrated into the BDI architecture. This chapter will finish with a brief overview

of the relevant MAS development tools that are currently being used by researchers. Chapter 3

then introduces and discusses the research methodology behind implementing the extended

AgentSpeak(L) language. Chapter 4 then details the development environment that was created,

including the simulation environment and the configuration and running of MASs. Chapter 5

then discusses the work presented in this dissertation, relating it back to the initial research

objectives and finally, Chapter 6 will conclude the dissertation.
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2
LITERATURE REVIEW

This chapter provides a comprehensive review of the work related to this dissertation. It

will begin with an introduction to the BDI architecture, including a comparison of the

most popular BDI agent-based programming languages. After selecting AgentSpeak(L)

as the best language to be extended with uncertainty modelling capabilities, AgentSpeak(L) itself

will be reviewed in detailed.

This is followed by a comprehensive introduction to well-known uncertainty theories used to

model uncertain information and knowledge across various domains, including, probability theory

and possibility theory. Particular focus is given to their practical applicability in MAS, in terms

of their complexity and resulting scalability. The next section details the state-of-the-art in BDI

uncertainty modelling, where particular focus is given to the tractability of these frameworks.

The next topic of this literature review covers existing MAS platforms, which are defined

here as tools that provide a user with the ability to design and test MASs. As the AgentSpeak(L)

programming language has been selected for this work, this section will mainly focus on platforms

that are based upon the AgentSpeak(L) language.

2.1 Belief Desire Intention (BDI) Architecture

Within the research community, the notion of an intelligent agent, which appears to be the

subject of it’s beliefs, desires, commitments and other mental attitudes is widely accepted. The

philosopher Dennett coined the term intentional agent to define such systems (Clement 1987).

Many different logics have been proposed in order to formalise intentional systems, amongst

these are theory of intentions (Cohen and Levesque 1990) and BDI logic (Rao and M. P. Georgeff

1991). However, logical agents cannot be developed using ad-hoc logical languages but instead

require programming in executable languages.

5



CHAPTER 2. LITERATURE REVIEW

The BDI architecture is a computational model that has gained much interest to fill this gap.

Figure 2.1 illustrates the basic architecture. As it’s name suggests, BDI agents consist of:

• Beliefs: representing the agents knowledge about the world,

• Desires: states of the world that the agent wants to bring about,

• Intentions: the actions currently under execution for achieving the agent’s desires.

BDI Agent

Beliefs

Desires

Intentions

Perceive Act

Sensors Actuators

Environment

Figure 2.1: Belief-Desire-Intention (BDI) agent architecture.

As well as these components agents also consist of a predefined plan library and event queue.

The plan library consists of plans representing the procedural knowledge of the agent. The event

queue consists of external events perceived from the environment, internal events generated by

the agent (to update it’s belief base) and internal subgoals (to help achieve it’s desires).

A typical BDI interpretation cycle is detailed below:

1. Observe the agents environment and internal state and update the event set accordingly.

2. Select the relevant plans whose triggering event matches an event in the event set. Select

the applicable plans whose preconditions are also satisfied.

3. Select one applicable plan to execute.

4. Put the new plan either into a new or existing intention stack.

5. Select an intention and execute the next step from the top plan. If it is an action then

perform it and if it is a subgoal add it to the event set.

There are many BDI implementations and agent programming languages, each with their

own strengths and weaknesses. There are too many to review here but the reader can be
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referred to (Kravari and Bassiliades 2015a) and (Mascardi, Demergasso, and Ancona 2005),

providing a survey on BDI agent programming languages and a survey on general agent platforms

respectively.

AgentSpeak(L) is a theoretical agent-based programming language that is an extension of

logic programming for the BDI architecture. It has gained much interest within the MAS research

community with popular implementations such as Jason (Rafael H. Bordini, Jomi Fred Hübner,

and Wooldridge 2007). AgentSpeak(L) retains the most important aspects of BDI-based reactive

planning systems, which makes it particularly interesting (Á. F. Moreira, Vieira, and Rafael H.

Bordini 2004). It’s relation to BDI logics and formal semantics are also being widely studied (A. F.

Moreira and Rafael H. Bordini 2002; Rafael H. Bordini and Á. F. Moreira 2002; Rafael H. Bordini

and Á. F. Moreira 2004).

2.2 AgentSpeak(L)

(Rao 1996) provide an operational and proof-theoretic semantics of a language AgentSpeak(L),

an abstract language used for describing and programming BDI agents. It is an extension of logic

programming for the BDI architecture, which is the predominant approach for implementing

intelligent agents (Andrew 2001).

An AgentSpeak(L) agent is defined by specifying a set of base beliefs, known as the belief base

and a set of plans, known as the agent’s plan library. A belief atom takes the form of a first-order

predicate. Each belief from the belief base consists of a belief atom or it’s negation, which are

known as belief literals.

Agents define two types of goals, test goals and achievement goals:

• Achievement Goals: Achievement goals are predicates prefixed with the achievement

operator ’!’. They represent the states of the world (where the predicate evaluates to true)

that the agent wants to achieve. Achievement goals are usually used to trigger subplans.

• Test Goals: Test goals are predicates prefixed with the test operator ’?’. Agents use test

goals to check whether or not a predicate unifies with it’s belief base, returning a unifier or

failing otherwise.

Agents maintain an event queue that is used to instantiate plans. Events can take the form

of the addition ′+′ or deletion ′−′ of both beliefs and goals. These events can be either external

or internal events. External events are generated from belief updates resulting from the agents

perception of it’s environment. Internal events are generated when a subgoal needs to be achieved.

Each plan consists of three components:

• Triggering Event: Triggering events define which events make a plan relevant.

7



CHAPTER 2. LITERATURE REVIEW

• Context: The plan context consists of a conjunction of belief literals. If the context is a

logical consequence of the agent’s belief base then the plan becomes applicable.

• Plan Body: The plan body consists of a sequence of basic actions or (sub)goals that the

agent must achieve (or test) if the plan is applicable and chosen for execution.

Figure 2.2 shows some examples of AgentSpeak(L) beliefs, goals and plans. The initial beliefs

tell us that the agent is currently at location(1) and that there is water at location(2). The agent

has an initial goal to find water, which is added to the event set. The +! f indWater goal is then

selected from the event set and used to select the relevant plans (both of the +! f indWater

plans are relevant). The plan contexts are then evaluated resulting in the variable A unifying

as A/2 due to the belief water(location(2)). As the agent is not at location(2) the second plan

context is not a logical consequence of the belief base and thus will fail. The first plan’s context,

however, is a logical consequence and therefore is an applicable plan, returning the unifier A/2.

This plan is then selected for execution and the subgoal +!move(location(2)) will be added to the

event set. This will trigger the +!move(location(A)) plan resulting in the environment action

travel(location(1), location(2)). The agent will now be at location(2) and will update it’s belief

base accordingly. The second action from the first plan +! f indWater will now be added to the

event set, leading to both of the +! f indWater plans becoming relevant. This time, however,

only the second plan’s context is a logical consequence of the belief base as the agent is now at

location(2). The agent will then perform the environment action sampleWater(location(2)).

1 / / i n i t i a l b e l i e f s
2 water ( l ocat ion ( 2 ) ) .
3 at ( l ocat ion ( 1 ) ) .
4
5 / / i n i t i a l goals
6 +! findWater .
7
8 / / plan l ibrary
9 +! findWater : water ( l ocat ion (A) ) & ~at ( l ocat ion (A) ) <− +!move( locat ion (A) ) ; +! findWater .

10 +! findWater : water ( l ocat ion (A) ) & at ( l ocat ion (A) ) <− sampleWater ( l ocat ion (A) ) .
11 +!move( locat ion (A) ) : at ( l o cat ion (B) ) <− travel ( l o cat ion (B) , l o cat ion (A) ) .

Figure 2.2: Example of AgentSpea(L) beliefs, goals and plans

2.2.1 AgentSpeak(L) Syntax

The language for specifying AgentSpeak(L) agents is shown by the grammar in Figure 2.3.

An AgentSpeak(L) agent is defined as a set of beliefs bs (the belief base) and a set of plans ps

( the plan library). The atomic formulae of the language at are predicates with predicate symbol

P and standard terms of first-order logic t1...tn. All atomic formulae at in the belief base must be

grounded, i.e. they cannot contain variables.

A plan p is composed of three components: the triggering event te, the context ct and a

sequence of actions, goals or belief updates h. The triggering event and context te : ct are referred

8
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ag ::= bs ps
bs ::= at1. . . . atn.
at ::= P(t1,...,tn)
ps ::= p1 ... pn
p ::= te : ct <- h .
te ::= +at | -at | +g | -g
ct ::= true | l1&...&ln
h ::= true | f1;...;fn
l ::= at | not at
f ::= A(t1,...,tn) | g | u
g ::= !at | ?at
u ::= +at | -at

Figure 2.3: AgentSpeak(L) grammar (Rafael H Bordini and Jomi F Hübner 2007)

to as the head of the plan and h is referred to as the body of the plan. The triggering event te can

be the addition or deletion of a belief atom or goal (+at, −at, +g, −g). The plan context ct is a

conjunction of belief literals l1 ∧ ...∧ ln where belief literals l are either a belief atom at or it’s

negation ¬at.

It is assumed that an agent has a predefined set of actions that it can perform. Each action is

defined by an action symbol A which takes standard first-order logic terms as arguments. There

are two types of goals, achievement goals !at and test goals ?at. Finally, there are also two belief

updates u, these are the addition and deletion of beliefs (+at and −at respectively).

2.2.2 Informal Semantics

The AgentSpeak(L) interpreter also manages a set of events, a set of intentions and utilises three

selection functions in order to operate.

• Sε - The event selection function is used to select a single event from the set of events. This

is the event that the agent has chosen to act upon.

• SO - The option selection function selects a single plan from the set of applicable plans.

• SI - The intention selection function selects a single intention from the set of intentions.

The selection functions are not defined in AgentSpeak(L) and instead are left to be designed

on a per agent basis (i.e. they should be agent specific).

Intentions are stacks of partially instantiated plans and represent the "course of action" an

agent has committed to in order to respond to a given event. Events can lead to the execution of

plans and can be either external or internal. External events arise due to an agent’s perception of

it’s environment (e.g. the addition of a new belief) and internal events are generated from the

execution of a plan (e.g. the addition of a new achievement goal from a subgoal within a plan).

When internal events trigger applicable plans they are added to the top of the intention that
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generated them, whereas external events lead to the creation of new intentions, representing a

new focus for the agents acting in the environment.

Figure 2.4 shows the interpretation cycle for an AgentSpeak(L) agent, where rectangles

represent sets (e.g. belief, event, plan and intention sets), diamonds represent selection (of a

single element from a set) and circles represent more complex processing required for interpreting

agent programs (Machado and R. Bordini 2003b).

Figure 2.4: AgentSpeak(L) interpreter (Machado and R. Bordini 2003b)

At every interpretation cycle an agent updates the list of events. The belief base is updated

through the agent’s perception of it’s environment and every time it is updated a corresponding

event is added to the event set. A description of an AgentSpeak(L) interpretation cycle is given

below:

1. The event selection function selects a single event from the event set.

2. The interpreter then attempts to unify this event with the triggering events of each plan in

the plan library. These plans are known as the relevant plans.

3. Next, for each relevant plan the agent checks whether the plan’s context is a logical

consequence of the belief base. This returns a set of applicable plans, each with their own
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unifiers. These are plans that can be used at the current time to deal with the selected

event.

4. The “option” selection function SO selects one of the applicable plans to become the intended

means for the selected event. If the event is an internal event the intended means is added

to the top of the current intention and if it is an external event then a new intention is

created.

5. Next, the intention selection function sI selects a single intention (a stack of partially

instantiated plans) from the set of intentions.

6. At the top of this intention there is a plan and it’s body is taken forward for execution.

7. The formulas in the plan body are then executed one-by-one. These may take the form of

the agent performing an action on it’s environment, generating an internal event (when it

is an achievement goal) or performing a test goal.

a) If the agent performs an action or a test goal then the intention set needs to be

updated.

b) If an action is performed then it is removed from the intention and the relevant

components of the agent that control the action are informed.

c) If a test goal is to be performed then the agent queries the belief base to find a

belief atom that unifies with the test goal. If it succeeds then the rest of the partially

instantiated plan will be further instantiated with that unifier. The test goal is then

removed from the intention.

8. Once all of the formulas in the plan body have been executed the plan is removed from the

intention. If it was triggered by an achievement goal then it is also removed.

9. This cycle is then repeated, starting with the agent perceiving it’s environment.

2.2.3 Summary

The AgentSpeak(L) belief base consists of first-order logic terms that act as binary true or false

representations of agent’s beliefs. Agent’s query their belief base when attempting to unify a plan

context or a test goal in order to determine if the context is a logical consequence of the agent’s

current beliefs or to obtain a substitution evaluating the test goal as true. Plan contexts and

test goals take the form of a conjunction of beliefs (first-order logic terms). In order to extend

AgentSpeak(L) agents to model and reason with uncertainty the method for modelling beliefs

must first be extended. This would then require new mechanisms for belief revision.

Following this, the language for constructing plan contexts and test goals must be extended

so that agents are capable of reasoning about these belief (i.e. determining if they more strongly
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believe "belief A" or "belief B"). Extending this language would require new mechanisms for

determining if a formula written in the language is a logical consequence of the agent’s belief

base. Achieving all of these in a tractable and efficient manner is an active area of research.

Bauters et al. (2017) present a theoretical approach for achieving this, which will be discussed in

Section 2.4.

2.3 Uncertainty Modelling

This section discusses the theories that have been proposed to manage uncertain information,

including probability theory (Ash 2012) and possibility theory (Dubois, Moral, and Prade 1998;

Zadeh 1999). There are other theories that deal with uncertain information but these will not be

discussed here. This section will focus on introducing different uncertainty theories and reviewing

both their expressive power and computational complexity. The desired output of this work is

the integration of expressive, scalable uncertainty theories into the AgentSpeak(L) language

discussed in Section 2.4.

2.3.1 Probability Theory

Probability theory is a statistical, subjective uncertainty theory. It is used to capture variability

through repeated observations (randomness) and to represent belief in situations with informa-

tion deficit (partial knowledge) (Edwin 2003).

Probability can be defined from a frequentist point of view, where it is related directly to

the frequency that events occur i.e. an event’s probability is defined as the limit of it’s relative

frequency over a large number of trials. For example, if 50.9% of babies born in the UK are

female then the frequentist probability of a newly born baby being female is P=0.509. Conversely,

probability can be defined from a Bayesian perspective, where the probability is interpreted

as reasonable expectation representing the state of knowledge or quantification of a belief. For

example, the probability that the sun will rise again tomorrow will be high due to our strong

prior belief that it will rise again tomorrow.

In the case of probabilistic modelling of beliefs, a probability distribution, P, on the set of all

possible worlds, Ω, can be defined as follows:

Definition 2.3.1. If Ω is the set of all possible worlds, then a mapping P :Ω→ [0,1], such that∑
w∈ΩP(w)= 1, is called a probability distribution.

By convention, P(w)= 1 implies that the world w represents the true state of the world and

P(w) = 0 implies that w is definitely not the true state of the world. Ignorance is modelled by

insufficient information, represented by the uniform distribution P(w)= 1
|Ω| .
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2.3.2 Possibility Theory

Possibility theory is an uncertainty theory that is capable of handling incomplete information

(Dubois, Moral, and Prade 1998). It is defined as a possibility distribution π :Ω→ [0,1], mapping

every possible world to a value between 0 and 1. By convention, π(w) = 0 implies that w is

impossible and π(w)= 1 implies that none of the available evidence prevents w from representing

the true state of the world. A possibility distribution corresponds to both a possibility measure and

a necessity measure. For nested mass assignments in Dempster-Shafer theory the belief measure

is called a necessity measure and the plausibility measure is called a possibility measure.

Possibility distributions are usually normalised as un-normalised distributions indicates

the presence of conflicting information. Beliefs instantiated with possibility theory are usually

compared qualitatively as they provide us with the ability to formulate expressions of the form

ψ1 ≥ψ2 as N(ψ1)≥ N(ψ2). This represents the intuition that ψ1 is at least as plausible as ψ2.

Definition 2.3.2. A possibility measure is a mapping Π : 2Ω→ [0,1], ∀A ⊆Ω, defined as Π(A)=
max{π(w)|w ∈ A}.

Definition 2.3.3. A necessity measure is a mapping N : 2Ω→ [0,1], ∀A ⊆Ω, defined as N(A)=
1−Π(Ω\A).

2.3.3 Summary

Both probability theory and possibility theory fall into the NP (non-deterministic polynomial

time) complexity class. NP problems are hard to solve but proofs are verifiable by deterministic

computations performed in polynomial time. Possibility theory comes with two measures of

possibility and necessity, which ensure that not as much information is thrown away as in

probability theory. This makes possibility theory perfect for expressing degrees of ignorance.

Possibilistic logic can be seen as an extension of propositional logic tolerant to inconsistencies that

provides a semantic setting for non-monotonic reasoning (Benferhat, Dubois, and Prade 1998),

whilst offering complexity close to propositional logic (Dubois and Prade 2015). This provides the

ability to formulate logical expressions of the form φ1 ≥φ2 i.e. φ1 is at least as plausible as φ2.

In the next section the application of different uncertainty theories in the BDI setting will be

introduced and discussed.

2.4 Uncertainty Modelling in BDI Agents

There are many BDI agent programming languages that have been developed, "Procedural

Reasoning System" (Ingrand, M. P. Georgeff, and Rao 1992), "AgentSpeak" (Rao 1996) and "A

Practical Reasoning System" (2APL) (Dastani 2008). These current BDI implementations are

not capable of modelling the next generation of systems as they are not able to model or reason

with uncertain information. The real world is pervaded with uncertainty, therefore an agents
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beliefs would be uncertain (due to sensor noise, incomplete information etc). Most uncertainty

theories do not consider tractability, resulting in computational complexity issues (Bauters et al.

2017). This aggravates their integration into BDI implementations as BDI agents rely on reactive

behaviour.

Currently, the majority of MASs model their agent’s belief as binary (true or false) represen-

tations. This significantly limits the ability of BDI agents to react in a satisfactory manner in an

uncertain environment. There are several sources of uncertainty that arise in the agent’s beliefs:

• Environmental perceptions:

– Uncertainty in what the agent has sensed,

• Actions:

– Uncertainty in how successfully the agent completed it’s intended action,

– Uncertainty in a specific effect that can change the epistemic state/belief set.

Previous work has integrated uncertainty into BDI, known as Graded BDI (Ana, Lluis,

and Carles 2005). In Graded BDI the beliefs, desires and intentions of an agent are modelled

with a measure of uncertainty. This was extended further in (Casali, Godo, and Sierra 2011)

to incorporate norms (patterns of behaviour to be followed). However, although this work is of

theoretical value there is a mismatch between theory and practice. This is because Graded BDI

uses complex modal logic axiomatisation, similar to that of BDI, making it hard to implement.

Previous work has also looked at the relationship between BDI and POMDP (Nair and Tambe

2005). They were successful in developing a hybrid BDI-POMDP framework that was able to

reason about uncertainty, outperforming both BDI and POMDP. However, this framework is

limited by the constraints of POMDP (modelling power and computational complexity).

In (Bauters et al. 2017) the operational semantics of Conceptual Agent Notation (CAN) are

extended to deal with uncertain information. This is achieved by representing the uncertain

beliefs of an agent as a set of epistemic states, which are stratified to make them commensurable

and to enable reasoning with uncertain beliefs. They introduce the concept of a Global Uncertain

Belief (GUB), a set of local epistemic states to represent agent’s uncertain beliefs. Bauters et al.

(ibid.) consider tractability throughout their theoretical work and thus provide a solid starting

point for implementing an uncertainty capable agent-based programming language.

2.4.1 CAN+ (Bauters et al., 2017)

In this section the relevant theory for extending the BDI architecture to model and reason

with uncertain information will be presented and discussed. This section is based on work done

by (ibid.) and (Ma and Liu 2011b), in particular their method for managing different sources

of uncertainty in a BDI framework. This section will first introduce Ma and Liu’s epistemic
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state, including it’s formal definition and revision operator. After focusing on the semantic

representation of epistemic states, an extended language that enables reasoning about uncertain

beliefs is introduced and the mechanisms for determining if a logical formula is entailed by an

epistemic state is detailed. Next, the extension to multiple epistemic states is outlined, including

an introduction to the Global Uncertain Belief (GUB) and mechanisms for GUB revision and

entailment. Following this, the tractable syntactic approach from Bauters et al. (2017) for

implementing epistemic states is outlined, including probabilistic and possibilistic instantiations.

2.4.1.1 Epistemic States

First of all, we must define an epistemic state as seen in (Ma and Liu 2011b).

Definition 2.4.1. Let Ω be the set of possible worlds. An epistemic state Φ is a mapping Φ : Ω

→ Z ∪ { −∞, +∞ }.

An epistemic state Φ is used to define the mental state of an agent and the value Φ(w)

represents the strength (weight) of an agent’s belief in a possible world w. Φ(w)=∞ represents a

possible world w that the agent believes fully plausible, Φ(w)=−∞ indicates that the possible

world is not plausible and Φ(w)= 0 represents the case when the agent is totally ignorant about

the plausibility of w.

Unlike other representations of epistemic states this definition does not apply any more

meaning to the values. As a result this definition provides a general epistemic state that can be

instantiated as any other representation.

The language L is defined in Backus-Naur Form (BNF) as: φ ::= a | ¬a | (φ1∧φ2) | (φ1∨φ2),

where a is a belief atom and φ is a formula such that φ ∈ L . New information consisting of a

proposition φ ∈L and an associated weight m ∈ (Z ∪ {−∞, +∞}) can update existing beliefs. This

information input(φ,m) can be represented as an epistemic state Φin such that Φin(w)= m iff

w |=φ and Φin(w)= 0 otherwise. This naturally leads to the epistemic state revision operator ◦
proposed by (ibid.): ∀w ∈Ω, (Φ◦Φ′)(w) = Φ(w)+Φ′(w). This operator is both commutative and

associative which is desirable for handling revision with uncertain information. This definition of

an epistemic state forms the basis for how uncertain beliefs can be modelled.

In order to model and reason about uncertain beliefs a language L≥ (an extension of L ) is

defined in BNF as:

ψ ::= a | ¬a| (ψ1 ∧ψ2) | (ψ1 ∨ψ2)

φ ::= a | ¬a | (φ1 ∧φ2) | (φ1 ∨φ2) | (ψ1 ≥ψ2) | (ψ1 >ψ2) | not ψ

This new language supports the intuition that one formula is more strongly believed than

another (ψ1 >ψ2), i.e. it has a higher weight, that a formula is at least as plausible as another

(ψ1 ≥ψ2) and it also supports negation-as-failure (not ψ) i.e. "ψ is assumed not to hold".
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The semantics of the extended language L≥ requires the definition of the λ-value, a mapping

from formula φ ∈L≥ to Z∪ {−∞,+∞}. This value represents how strongly an agent believes the

formula φ to be true.

Definition 2.4.2. Let φ ∈ L≥. If φ ∈ L (i.e. φ is a propositional statement) then λ(φ) = max{Φ(w)

| w |= φ}, where max(;) = 0. Otherwise it is defined as λ(φ) = λ(pare(φ)), where pare is:

pare(φ⊕ψ)= check(φ)⊕ check(ψ)

pare(φ≥ψ)=
{
>, if λ(¬φ)≤λ(¬ψ)

⊥, otherwise

pare(φ>ψ)=
{
>, if λ(¬φ)<λ(¬ψ)

⊥, otherwise

pare(not φ)=
{
>, if φ ∈L and λ(¬φ)≥λ(φ)

⊥, otherwise

check(φ)=
{
φ, if φ ∈L

pare(φ), otherwise

The conjunction ∧ and disjunction ∨ operators are checked to ensure that both operands are

formulas from language L . If they are not then they are pared down to propositional formulas

(φ ∈ L ). Qualitative operators such as ≥ are expressed as an ordering, e.g. φ ≥ψ reads as "φ

is more plausible that ψ" or, "¬ψ is more certain than ¬φ". For negation-as-failure (not φ) the

classical negation of φ is checked to see if it is more believed than φ. It is worth noting that as λ

is not normalised λ(>) can take different values in different epistemic states and also that the

negation-as-failure and qualitative operators (such as >) only make sense when the operands φ

are classical formulas.

Using the λ-value it is possible to determine if a formula φ is entailed by an epistemic state

Φ.

Definition 2.4.3. Let φ ∈L≥ and φ be an epistemic state, then Φ |=φ iff λ(φ)>λ(¬φ).

This definition states that a formula φ is entailed by an epistemic state Φ if an only if

λ(φ)>λ(¬φ). For a belief atom a ∈ At it may be the case that λ(a) = λ(¬a), this represents total

ignorance about the value of a. This is the reason both expressions must be mapped onto distinct

values.

2.4.1.2 Multiple Epistemic States

Agent’s usually require multiple epistemic states to represent their beliefs. This may be because

different subsets of beliefs do not influence each other. Thus to prevent complexity issues that
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arise due to the exponential size of each epistemic state, they can be separated into multiple

epistemic states. As each epistemic state can be instantiated with different uncertainty theories

it may also be practical to separate subsets of beliefs into different epistemic states.

Bauters et al. (2017) introduce the Global Uncertain Belief (GUB), which is a set of epistemic

states.

Definition 2.4.4. A GUB G is a set of epistemic states {Φ1, ...,Φn} such that each Φi represents

an epistemic state epistemic state over the domain A i ⊆ At where {A1, ..., An} is a partition of At.

Each epistemic state within the GUB represents beliefs that are semantically related and

instantiated with the same uncertainty theory. A GUB is not an epistemic state which has the

following consequences:

• By partitioning the beliefs it simplifies the exponential representation of epistemic states.

• Enables each epistemic state to be instantiated with a different representation.

• No revision strategy is defined as each local epistemic state has their own.

In the BDI setting an agent wishes to check if a plan context is entailed by it’s belief base. In

our setting the belief base has taken the form of a GUB and the logical formula φ has become

the plan context. A formula φ can be evaluated if it is associated with a single epistemic state as

Φ |=φ. However, more commonly the context is associated with multiple epistemic states, so it

needs to be broken up and evaluated directly.

It is trivial to split an expression with conjunctive (∧) and disjunctive (∨) connectives, however,

it is not so simple with qualitative connectives such as > and ≥. If the operands are instantiated

with different uncertainty theories then it is not possible to evaluate the expression. For the case

when the operands are from different epistemic states their different underlying structures also

makes it not possible to evaluate the expression.

A new language on the GUB level is defined as LG . The language LG consists of every

formula φ ∈L
A i≥ over A i with i ∈ {1,k} i.e. it consists of every formula contained within the GUB.

It also contains conjunctions and disjunctions i.e. for φ1,φ2 ∈ LG both φ1 ∧φ2 and φ1 ∨φ2 are

formulas within LG .

Using this language a formula φ can be broken down and evaluated by considering the

operands. If the connectives (>,≥) are not comparable then it will return a contradiction.

Definition 2.4.5. Let G be a GUB and φ ∈ LG be a plan context, then G is said to entail φ

(G |=φ) iff valGUB(φ)≡>, where valGUB is defined as:
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valGUB(φ)=


>, if φ ∈L

A i≥ , Φi |=φ

⊥, if φ ∈L
A i≥ , Φi 6|=φ

simpli f y(φ), otherwise

simpli f y(φ⊗ψ)= val(φ)⊗val(ψ) ⊗∈ {∨,∧}

A GUB must also be capable of revising with an uncertain belief b = (φ,m), where φ ∈
L . This is denoted as G ◦ b. Although a GUB can be revised as an epistemic state it is not

computationally efficient to do so (Bauters et al. 2017). The belief revision can instead take the

form of a marginalisation of the formula φ followed by revision according to each epistemic states

revision strategy.

Definition 2.4.6. Let G be a GUB, b = (φ,m) be an uncertain belief revising G and A in = {a∗|a ∈
l it(φ)} (the set of atoms in the formula φ). Now, for Φi ∈G (every epistemic state in the GUB),

re f ine(b,Φi) is defined as:

re f ine(b,Φi)=
{

f orget(b,Φi), if A in
⋂

A i 6= ;
〈〉, otherwise

where f orget(b,Φi) = 〈(ᾱ,m) | w ∈ Mod(φ), α = w
⋂

l it(A i)〉 defines the sequence of inputs

and Mod(φ) returns the set of all models of φ.

When the domain A i of an epistemic state Φi does not intersect with the domain A in of the

input b, re f ine returns an empty sequence of inputs i.e. the epistemic state Φi is not affected

by the input b. When the domains do intersect (A in
⋂

A i 6= ;) the formula is broken down into

a sequence of inputs for the the relevant epistemic state Φi. Each epistemic state can then be

iteratively revised for each input according to it’s own revision strategy.

The final GUB revision can be defined as follows:

Definition 2.4.7. Let G be a GUB and b be an uncertain input. Revision can be denoted as

G ◦b = {Φi ◦ re f ine(b,Φi) | φi ∈G } where ◦ is the corresponding revision operator for Φi.

Figure 2.5 shows visual representations of entailment and revision of a GUB.

2.4.1.3 Compact Epistemic Sates

As BDI agents require reactive behaviour it is extremely important that any approach for

modelling and revising uncertain beliefs is not prohibitive. Bauters et al. (ibid.) propose a

tractable syntactic approach for modelling and revising with uncertain inputs.

The approach utilises a compact epistemic state and only considers literals l as inputs, these

can be either positive literals (a) or negative literals (¬a). For this reason the weights associated
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Figure 2.5: Diagrams showing Global Uncertain Belief (GUB) entailment (left) and revision
(right) (Bauters et al. 2017)

with both literals (a,¬a) of a given atom a ∈ At are maintained (
+
µ and

−
µ respectively). Here At

refers to the finite set of atoms associated with the compact epistemic state, also known as the

domain. Lit is used to define the corresponding set of literals.

Definition 2.4.8. A compact epistemic state W is defined as a mapping W : At → (Z ∪ {−∞,

+∞})2, such that W(a) = (
+
µ,

−
µ).

This definition shows that each belief atom a is mapped to two weights (
+
µ and

−
µ), associated

with the positive a and negative ¬a literals of the belief atom a. A tractable belief change operator

adjusts the weight associated with the literal given as an input.

Definition 2.4.9. Let W(a)= (
+
µ,

−
µ) be a compact epistemic state and (l,µ) be an uncertain input,

then W ′ =W ◦t (l,µ) can be defined as:

W ′(a)=


(
+
µ+µ,

−
µ), if l = a

(
+
µ,

−
µ+µ), if l =¬a

W(a), otherwise

A compact epistemic state can be implemented using a sorted map. This map contains

elements between belief atoms and a pair of values representing the positive and negative

weights (
+
µ,

−
µ). Revising such a compact epistemic state can be achieved using an algorithm of

complexity log2(|At|) as it involves a binary search over the keys and a constant time revision

(addition of value) (ibid.).

As well as belief revision an efficient belief entailment operator is required. The belief set

of a compact epistemic state can be defined as Bel(W) = ∧
{l ∈ Lit | wW (l)> wW (¬l)}. As Bel(W)

is a conjunction of literals it is easy to determine if a formula φ ∈L is a logical consequence of

Bel(W). Evaluating a formula φ ∈L requires replacing each occurrence of literals from Bel(W)

in φ as a tautology (>) and all others as a contradiction (⊥). Although determining if a formula
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φ ∈ L is a logical consequence of Bel(W) is straight forward, it is more complicated to reason

about the uncertainty.

In order to reason about uncertainty efficiently a restricted language must be used. It

comprises a fragment of the language where it is straight forward to find the literals whose

weight is known (bounded literals). For example, when determining the weight of a formula the

weights associated with the bounded literals (literals in the formula) must be used, whereas the

highest weight associated with an unbounded literal l (weight of a or ¬a) can be used. Therefore

the fragment of the language must make it easy to determine the set of bounded literals. The

language Lt ⊆L is defined in BNF as follows:

dis j ::= a | ¬a | dis j1 ∨dis j2

con j ::= a | ¬a | con j1 ∧ con j2

φ ::= a | ¬a | dis j∧ con j | φ1 ∨φ2

The language ensures that whenever a conjunction occurs, one branch will contain only

conjunctions whilst the other only disjunctions. In order to obtain the weight associated with a

formula φ ∈Lt a new notion is introduced TW =∑
a∈At max(W(a)). This represents the sum of all

the maximum weights associated with each atom (the maximum sum of weights if no literals are

bounded). This sum can be calculated easily from belief revision. For W ′ = W ◦t (l,µ) it can be

calculated as follows, TW ′ = TW −maxW(l∗)+maxW ′(l∗). From this new language the λ-values of

a formula φ ∈Lt can be determined as follows:

Definition 2.4.10. Let W be a compact epistemic state, φ ∈L and L a set of literals. The λ-value

is recursively defined as λt(φ,L):

λt(φ1 ∨φ2, L) = max(λt(φ1,L), λt(φ2, L))

λt(dis j∧ con j,L) = λt(dis j, L∪ l it(con j))

λt(l, L) =
{
−∞, if inconsistent(L∪ {l})

maxTW (l,L), otherwise

where inconsistent(S) is true if ∃a ∈ At · {a,¬a}⊆ S and maxTW (l,L) = TW − ∑
l′∈L∪{l}

|wW (l′)−maxW(l′∗)|.

This definition keeps track of the bounded literals as required. A disjunction results in the

maximum λ-value being taken forward without any change to the bounded literals, whereas a

conjunction defines what literals are bounded and thus adds literals to the set of bounded literals.

When the formula is reduced to a literal l, both l and the set of bounded literals L are checked

for consistency. If they are inconsistent then the λ-value is set to −∞. Otherwise, it is calculated
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starting from TW and removing all of the maximum weights associated with the bounded literals

L∪ {l} and then adding the correct bounded weights back.

The language Lt can be extended to include operators such as φ1 >φ2 and φ1 ≥φ2. The λ(φ)

value of a formula φ can be computed and then the pare(φ≥ψ) function defined earlier can be

used. The language L ≥
t is defined in BNF as:

dis j ::= a | ¬a | dis j1 ∨dis j2

con j ::= a | ¬a | con j1 ∧ con j2

φ ::= a | ¬a | dis j∧ con j | φ1 ∨φ2 | φ1 ≥φ2 | φ1 >φ2

2.5 Multi-Agent System Development Tools

Recent research in MAS has led to the development of programming languages and development

tools for implementing such systems. This new programming paradigm is an extremely important

part of MAS research. This work is focused on creating and testing a development environment

for agents programmed in Uncertain AgentSpeak(L). There are many MAS platforms that can be

reviewed and Kravari and Bassiliades (2015b) provide a comprehensive survey. As this work is

based on an extension of AgentSpeak(L) it is logical to review the MAS platforms that are based

on AgentSpeak(L).

Jason is the most widely used platform based on AgentSpeak(L) (Rafael H. Bordini and

Jomi F. Hübner 2006). It is an interpreter for an extended version of AgentSpeak(L) that is

implemented in Java. It implements the operational semantics of AgentSpeak(L) and provides

a development environment for defining and simulating AgentSpeak(L) agents. It provides

multiple infrastructures for implementing MASs: centralised, Simple Agent Communication

Infrastructure (SACI) and Java Agent DEvelopment Framework (JADE).

A centralised architecture enables all of the agents and the environment to be run on a single

computer. In order for this to be achieved the environment is executed on it’s own separate thread

and attends to the actions requested by agents. Each agent is assigned a thread which executes

the agent’s reasoning cycle. As a result the environment is capable of handling multiple agent

requests concurrently. However, this infrastructure is limited in the number of agents that can

be run and depends on the capabilities of the JVM and the operating system.

The Simple Agent Communication Infrastructure (SACI) (J. Hübner and Sichman 2009) is

a Java API that provides a set of tools for distributed groups of agents. The SACI API has two

important features: (i) composing and sending/receiving messages and, (ii) removing architecture

design from agent designers (Fernández et al. 2010). The agents are grouped into societies that

have mailboxes, providing communication between them. This can be seen in Figure 2.6.

A more popular infrastructure that is provided by Jason is the Java Agent DEvelopment

Framework (JADE) (TILAB 2009). JADE uses a middle-ware that complies with FIPA specifi-
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Figure 2.6: Simple Agent Communication Infrastructure (J. Hübner and Sichman 2009)

cations and simplifies the implementation of MASs. A MAS platform can be distributed over

multiple machines using JADE, as can be seen in Figure 2.7.

Figure 2.7: Java Agent DEvelopment Framework (JADE) (TILAB 2009)

In order to provide portability when designing a framework it is logical to implement the

framework in Java as programs written in Java can be run on any machine that can run the

JVM. The different infrastructures introduced in this section provide different functionalities

to a designer and the overall MAS. Although distributed infrastructures can provide enhanced

performance, most MAS development tools provide a centralised infrastructure as it offers a

simple and effective means of developing and testing MASs. The complexity behind implementing

distributed infrastructures has resulted in their application mainly in development tools tailored

towards implementing industrial scale systems.
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2.6 Summary

The aim of this chapter was to review the relevant literature that will be encountered throughout

this dissertation. This chapter has provided the necessary background as well as a comprehensive

review of the technologies related to this research. The main areas that were covered in this

section are as follows:

• the BDI architecture

• the AgentSpeak(L) agent programming language

• modelling uncertain information using probability theory and possibility theory

• modelling and reasoning with uncertain information in a BDI setting

• MAS development tools for designing and testing AgentSpeak(L) agents.
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3
EXTENDING AGENTSPEAK(L) TO MODEL AND REASON WITH

UNCERTAINTY

This chapter details the research methodology that was employed in response to the initial

research objectives for implementing uncertainty modelling and reasoning capabilities

in the AgentSpeak(L) programming language. Initially this chapter highlights the sim-

ilarities and differences between the languages and the rationale behind the design decisions

that were made. Next, the implementation of standard first-order terms is discussed, along

with the underlying mechanisms for implementing unification. These form the basic building

blocks for both AgentSpeak(L) and the extension. This is followed by the implementation of the

language L≥ for constructing logical formula that are used in plan contexts and test goals. This

language is what provides the extended reasoning capabilities of the agents enabling them to

select plans by reasoning about their uncertain beliefs. Next, the extension of the belief base

is outlined, first focusing on the implementation of epistemic states and their mechanisms for

revision and entailment. It will then focus on how these are used by a GUB for modelling the

uncertain beliefs of an agent and determining when a logical formula (plan context or test goal)

is a logical consequence (entailed) of the GUB. The remainder of this section will then outline the

implementation of the remaining AgentSpeak(L) components (goals, triggering events, actions,

plans) and will finish by detailing how the agents interpreter functions by utilising all of the

components mentioned previously.

3.1 AgentSpeak(L) Modifications

In order to implement the extended language some fundamental changes were made. The first

modification involved implementing the language L≥ so that both the plan context φ from
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e : φ ← P and test goals ?φ could be extended to take the form of any sentence from L≥, as

apposed to just a conjunction of belief literals (as in AgentSpeak(L)). The language L≥ is shown

below:

dis j ::= a | ¬a | dis j1 ∨dis j2

con j ::= a | ¬a | con j1 ∧ con j2

φ ::= a | ¬a | dis j∧ con j | φ1 ∨φ2 | φ1 ≥φ2 | φ1 >φ2

In AgentSpeak(L), beliefs are implemented as belief atoms, which are not capable of modelling

uncertainty. Therefore, beliefs had to be extended so that they could take the form of epistemic

states, where each belief literal has an associated weight, corresponding to the strength of the

agent’s belief.

In AgentSpeak(L), belief revision is simply the addition and deletion of belief atoms from

the agent’s belief base, however, this is not the case for epistemic states. For this reason, the

mechanisms for belief revision also required modification.

Belief entailment occurs when an agent checks that a plan’s context is a logical consequence

of the agents belief base. In AgentSpeak(L) this is as simple as checking that a belief literal is

present in the agent’s belief base. In the extended version, entailment is much more complicated

due to plan contexts taking the form of any sentence from the extended language L≥. As a

result, the extended version required modification of the mechanisms for implementing belief

entailment.

Belief revision and entailment occur on both an individual belief level and on the belief base

level. The modification to modelling beliefs as epistemic states lead to the belief base requiring

extending to a GUB. As described in Section 3, a GUB is a set of logical formulas over the

language L≥ that also supports belief revision. As such, a GUB offers tractable modelling and

revision of uncertain beliefs in the BDI setting.

3.2 Syntax

In Section 2.2 the standard AgentSpeak(L) grammar was presented. In Figure 3.1 the BNF

grammar for the extended AgentSpeak(L) language is shown.

In the grammar <VAR> is an identifier beginning with an uppercase letter (representing a

variable), <ATOM> is an identifier beginning with a lowercase letter, <NUMBER> is any integer

number and <DECIMAL> is any floating point number. There are five key differences:

• The agent’s beliefs are no longer simply belief atoms but instead can be instantiated as

probabilistic or possibilistic compact epistemic states.

• There are no longer event triggers for belief addition and deletion but instead a single event

trigger for belief revision.
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uncertainAgentspeak ::= init_bels init_goals plans EOF

// Initial beliefs
init_bels ::= (probabilistic_es | possibilistic_es )*
probabilistic_es ::= probabilistic_bel+
possibilistic_es ::= possibilistic_bel+
probabilistic_bel ::= ’**(’ belief_literal ’,’ number ’)’ ’.’
possibilistic_bel ::= ’***(’ belief_literal ’,’ number ’)’ ’.’

// Initial goals
init_goals ::= ( achievement_goal ’.’ )*

// Plans
plans ::= ( plan )*
plan ::= event ’:’ context ’<-’ body ’.’

// Event
event ::= belief_event_trigger | goal_event_trigger | ’true’
belief_event_trigger ::= ’*(’ belief_literal ’,’ term ’)’
goal_event_trigger ::= add_goal_event_trigger | delete_goal_event_trigger
add_goal_event_trigger ::= ’+’ goal
delete_goal_event_trigger ::= ’-’ goal
goal ::= achievement_goal | test_goal
achievement_goal ::= ’!’ term
test_goal ::= ’?’ log_expr

// Plan Context
context ::= log_expr | ’true’

// Logical Expressions
log_expr ::= or_expr (’&&’ or_expr)*
or_expr ::= less_than_expr (’||’ less_than_expr)*
less_than_expr ::= less_equals_expr (’<’ less_equals_expr)*
less_equals_expr ::= greater_than_expr (’=<’ greater_than_expr)*
greater_than_expr ::= greater_equals_expr (’>’ greater_equals_expr)*
greater_equals_expr ::= equals_expr (’>=’ equals_expr)*
equals_expr ::= not_equals_expr (’==’ not_equals_expr)*
not_equals_expr ::= negation_expr (’\\==’ negation_expr)*
negation_expr ::= ’not’ belief_atom_expr

| ’~’ belief_atom_expr
| belief_atom_expr

belief_atom_expr ::= belief_atom | ’(’ log_expr ’)’

// Plan body
body ::= body_statement (’;’ body_statement)* | ’true’
body_statement ::= belief_action | goal | environment_action
belief_action ::= ’*(’ belief_literal ’,’ term ’)’
environment_action ::= term

// Beliefs
belief_literal ::= positive_literal | negative_literal
positive_literal ::= belief_atom
negative_literal ::= ’~’ belief_atom
belief_atom ::= term

// Terms
term ::= constant | variable | structure
constant ::= atom | number
variable ::= <VAR>
structure ::= <ATOM> ’(’ arguments_list ’)’
atom ::= <ATOM>
number ::= intNum | doubleNum
arguments_list ::= term | term ( ’,’ term )+
intNum ::= <NUMBER>
doubleNum ::= <DECIMAL>

Figure 3.1: Extended AgentSpeak(L) grammar

• Test goals no longer take the form of a standard first-order logic term but can instead take

the form a formula φ from the language L≥.

• Plan contexts are no longer simply a conjunction of literals but instead can be expressed as
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a formula φ from the language L≥.

• There are no longer actions for belief addition and belief deletion but instead a single action

for belief revision.

The rest of this section will outline the methodology and justify the design decisions that

were made whilst implementing the extended language.

3.3 Terms

The underlying first-order logic terms that form the basis for writing agent programs are intro-

duced here. These are the terms from the bottom of the grammar in Figure 3.1. The implemented

alphabet consists of:

1. A set of constant symbols - Constant names start with lowercase letters (atoms) e.g. john.

Integers and double numbers are also allowed.

2. A set of variable symbols - Variables are used to denote the same elements in case the name

of an element is not known. Variables names start with uppercase letters e.g. Name.

3. A set of structure symbols - Structures serve as complex object constructors. Here they are

used to construct predicates that take a number of terms as arguments e.g. parent(john,

steve).

Figure 3.2 shows the class diagrams and inheritance structure that was used to implement

the terms. These form the basic "data types" that were used to implement both AgentSpeak(L)

and the extension.

3.3.1 Unification

At the heart of any computational model for a logic programming language is it’s unification

algorithm. In this work a unifier class was created to act as a mapping from variables to terms.

The unifier class extends the hash map class with variable’s as keys and term’s as values. Hash

maps ensures that every key (variable) is unique.

Each term contains a method for substituting a unifier into the term and returning the result.

This is used throughout AgentSpeak(L) and the extended version to enable the instantiation of

variables.

Unification was achieved by recursive descent (Baader and Snyder 1999). The term class

contains a unify(Term) method that unifies the term associated with the class with the given

input term. It checks if the term is an instance of a constant, variable or structure and calls the

relevant unify() method for that term type.
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Figure 3.2: Class diagrams of first-order logic terms

• Constants - If a constant attempts to unify with another constant it will return null,

unless the two constants are the same, in which case it will return an empty unifier. If a

constant attempts to unify with a variable a unifier with a mapping from the variable to

the constant will be returned. If a constant attempts to unify with a structure it will return

null.

• Variable - If a variable attempts to unify with another variable it will return a unifier

mapping itself to the other variable, unless the two variables are the same, in which case it
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will return an empty unifier. If a variable attempts to unify with a structure it will return a

unifier with a mapping from the variable to the structure.

• Structure - Unifying two structures is slightly more complicated than the other cases. A

method unify(Term, Unifier) was created that first substitutes the unifier into both terms

and then attempts to unify them, returning the most general unifier. The unify(Structure)

method from the structure class first checks that the two structures have the same predicate

symbol and that they are of the same arity. It then iterates through each argument and

calls the unify(Term, Unifier) method with each argument and a unifier. Originally this

unifier is empty but any unifiers returned by the unify(Term, Unifier) method are added to

the unifier for subsequent arguments. This procedure ensures that the most general unifier

will be returned as the hash map will replace any previous mappings with the new input if

they have the same key (variable).

3.3.1.1 Example

An example term consisting of constants (IntNum, DoubleNum, Atom), variables and structures

is given below:

1 move( john , locat ion (X1 , Y1) , l o cat ion ( 2 , 1 . 0 ) ) .

Figure 3.3 shows the parse tree for the example using the grammar shown in Figure 3.1. It is

clear that the parser is cable of detecting all types of terms including nested terms.

Figure 3.3: Parse tree for the term - move(john, location(X1,Y1), location(2,1.0)).

3.4 Logical Expressions for Plan Contexts and Test Goals

Now that the standard first-order terms have been introduced the implementation of the language

L≥ for writing logical formulas used in plan contexts and test goals will be detailed. Figure 3.4
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shows the class inheritance structure that was used to implement the extended language L≥.

This class inheritance structure forms the base for all logical formulas that can be constructed in

the extended version of AgentSpeak(L), enabling reasoning with uncertain beliefs.

Logical Expression

BeliefAtom

Operator

Conjunction

Disjunction

GreaterEqualsPlausibility

GreaterThanPlausibility

Negation

NegationAsFailure

StrongNegation

RelationalExpression

Equal

NotEqual

Terminal

BeliefLiteral

NegativeLiteral

PositiveLiteral

Primitive

Contradiction

Tautology

Figure 3.4: Class inheritance structure for Logical Expressions in the extended language

This class structure includes all of the operators in the language L≥ and also includes

relational expressions for equals and not equals. All formulas constructed as a logical expression

consist of terminals, which are either positive or negative literals (consisting of an underlying

belief atom) or are a tautology or contradiction, if they are true or false respectively. Relational

expressions consist of two expressions (taking the form of logical expression’s) and an underlying

relational operator. The conjunction, disjunction, greater equals plausibility and greater than

plausibility operators also consist of two operands that are logical expressions. The negation

operator consists of a single operand and has two implementations, strong negation and negation

as failure.
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A parser generator called ANTLR (Parr 2013) was used for parsing the extended language

and instantiating agents. Figure 3.1 contains the grammar rules that were used for logical

expressions. The grammar enforces a well-defined precedence for the order in which operators

are evaluated, as seen in Table 3.1. The grammar permits parentheses to override precedence as

most programmers do not remember precedence rules.

Table 3.1: Table showing operator precedence for logical expressions

Level Operator Description Associativity
9 () Parentheses Left to right
8 AND Logical AND Left to right
7 OR Logical OR Left to right
6 < Relational Left to right
6 ≤ Relational Left to right
5 > Relational Left to right
5 ≥ Relational Left to right
4 == Equality Left to right
3 \== Equality Left to right
2 not Negation as failure Right to left
1 ¬ Strong negation Right to left

An example logical expression (a formula written in the language L≥) is given below and

Figure 3.5 shows it’s corresponding parse tree.

1 water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (Y1) ) && water_or_ice ( l ocat ion (X) ) >= water_or_ice
( l ocat ion (Y2) ) && at ( locat ion (Z ) ) > at ( l ocat ion (X) ) && X \== Z .

When the formula is parsed it is instantiated into the corresponding logical expressions

shown by the parse tree.
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Figure 3.5: Parse tree for example logical expression

Figure 3.6 shows the classes derived from the logical expression class. These classes were

extended further and their class inheritance structures can be seen in Figures B.1-B.3. Of

particular interest are the properties and methods of the logical expression class. These are

described below:
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Figure 3.6: Logical Expression Class Diagrams

• substitute(Unifier) - this method performs substitution on any free variables in the

logical expression using the unifier passed to the method.

• convertToNNF(boolean) - this method converts the logical expression into Negation

Normal Form (NNF). The boolean input signifies if a strong negation needs to be propagated

e.g. convert a negated conjunction (¬(a∧ b)) into a conjunction of the negation of the

conjuncts (¬a∧¬b). This is used in the entails(LogicalExpression) method in the epistemic

state class and also in the getLambda(LogicalExpression) method in the compact epistemic

state class. These methods require formulas in the language L≥ and the NNF of a formula

φ is an expression in the language L≥.

• inNNF() - this method returns true if the logical expression is in NNF. This is also used

by the getLambda(LogicalExpression) method in the compact epistemic state class. If the

formula is not in NNF then it is converted to NNF.

• convertToCNF - this method converts the logical expression into Conjunction Normal

Form (CNF). The SAT solver that was used (SAT4J) requires the formula to be in CNF.
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• classical - this property is true if the logical expression is a classical formula. The negation

as failure and qualitative operators are only valid when the operands are classical formulas.

This method is used in their constructors and throws an exception if their operand(s) are

not classical formulas. It is also used by the epistemic state class in the pare() method

to ensure that the operand(s) are calssical formulas, if they are not then the method will

return a contradiction.

• ground - this property is true if the formula contains no free variables and false otherwise.

Whenever a compact epistemic state is instantiated all of the belief atoms must be ground,

otherwise an exception is thrown. The getLambda() method in the compact epistemic

states class also utilises the property as it cannot determine a λ-value for a formula with

uninstantiated variables. When revising a GUB with a belief literal and associated weight

the revise() method checks that the belief literal is ground. Revising a belief literal with

uninstantiated variables would require finding all unifiers and then performing the revise()

method for each instantiation. This would be too computationally complex, which is why

the belief literals must be ground.

• setClauses - represents the set of all clauses of the formula. The getLambda(Conjunction)

method in the compact probabilistic epistemic state requires a SAT solver, which requires

the set of clauses to operate.

• terminals - this property is the set of terminals associated with the formula.

• disjunctive - this property is true if the formula is disjunctive and false otherwise. It

is used by the getLambda(Conjunction) method in the compact epistemic state class as

required by Definition 2.4.10.

• beliefLiterals - this represents the set of belief literals associated with a formula. This is

also used by the getLambda(Conjunction) method in the compact epistemic state class and

is used to add belief literals from a conjunction into the set of bounded literals as required

by Definition 2.4.10.

• beliefAtoms - this represents the set of belief atoms associated with a formula. It is used

by the languageContains(LogicalExpression) method in the epistemic state class to check

that all of the belief atoms in a formula are contained within the epistemic states domain.

This is consistent with enforcing formulas to be in the language LG from Definition 2.4.5.

(The language LG consists of every formula φ ∈L
A i≥ over A i with i ∈ {1,k} i.e. it consists of

every formula contained within the GUB. It also contains conjunctions and disjunctions i.e.

for φ1,φ2 ∈LG both φ1 ∧φ2 and φ1 ∨φ2 are formulas within LG .)
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• conjunctive - this property is true if the formula is conjunctive and false otherwise. It

is used by the getLambda(Conjunction) method in the compact epistemic state class as

required by Definition 2.4.10.

The logical expression class that has been detailed here is consistent with the theory from

Bauters et al. (2017) for implementing the extended language L≥ for reasoning about uncertain

beliefs. In AgentSpeak(L) test goals take the form of terms and plan contexts are just a conjunction

literals. In the extension of AgentSpeak(L) both plan contexts and test goals are logical formulas

φ from the language L≥ and are implemented as instantiations of the logical expression class.

Now that the language for constructing logical formulas has been detailed the implementation of

the extended belief base is introduced. The belief base requires methods for checking if a logical

expression object is a logical consequence (entailed) by it.

3.5 Belief Base

This section will detail how the belief base was implemented for the extended AgentSpeak(L)

language. It will first detail how the AgentSpeak(L) belief base was implemented and highlight

the key modifications that were required for the extension.

In AgentSpeak(L) beliefs are simply a belief atom or it’s negation i.e. a belief literal. The

belief base was implemented as an array list of belief ’s (ArrayList<Belief>) as it provided all of

the list methods required for the belief base. In AgentSpeak(L) plan contexts (logical formulae)

consist of a conjunction of belief literals. These are then evaluated by ensuring that every belief

literal in the context is a logical consequence of the belief base i.e. they are all contained in the

belief base. This was implemented by defining a class (Context) of type LinkedList<Belief>. Plan

contexts are evaluated when selecting applicable plans from the set of relevant plans.

This required iterating through each belief literal in the belief base, checking if the belief

literal and context belief literal were either both negative or both positive literals, substituting

the relevant unifier and checking that the context belief literal unifies with the belief literal. Upon

successful unification a unifier is returned, which is then taken forward and used for substitution

in the evaluation of subsequent context beliefs.

It is clear that in AgentSpeak(L) belief revision is as simple as adding and removing beliefs and

that entailment is easily evaluated. The rest of this section will now detail how the belief base for

the extended version of AgentSpeak(L) was implemented. It will first outline the implementation

of an epistemic state (representing a single belief), including the compact epistemic state and it’s

probabilistic and possibilistic instantiations. This will include the mechanisms for revision and

entailment of these epistemic states. After this, the implementation of the GUB as the belief base

will be discussed. Again, this will include the mechanisms for revision and entailment.
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3.5.1 Epistemic States

The concept of epistemic states was introduced in Section ?? in order to model uncertain beliefs. In

particular, a general epistemic state that can be instantiated as any other type was detailed. The

implementation of the logical expression class (the extended language L≥), capable of modelling

and reasoning about uncertain beliefs was introduced in Section 3.4. This language required

the definition of a λ-value, a mapping from formula φ ∈L≥ to Z∪ {−∞,+∞}, representing how

strongly an agent believes φ to be true. Definition 2.4.2 details how a formula φ ∈ L≥ can be

pared down so that it’s λ-values can be determined directly. Using the λ-value agents are able to

determine if a formula φ ∈L≥ is a entailed by the epistemic state.

Figure 3.7 shows the class diagram for the implementation of epistemic states. The epis-

temic state class is abstract and provides basic functionality, making it easier to implement

different epistemic state instantiations. The compact epistemic state was implemented as it

offers a tractable syntactic approach to modelling and revising with uncertain inputs. Both of

the probabilistic and possibilistic compact epistemic state instantiations were also implemented

as they provide powerful representations of beliefs whilst achieving good efficiency. Appendix A

provides the java code for implementing the GUB and epistemic states.

An epistemic state is defined by it’s domain (the set of belief atoms it covers) and provides the

following base methods:

• languageContains - The languageContains() method takes a LogicalExpression as an

input and returns true if the epistemic state’s domain contains all of the belief atoms in the

logical expression. This method is used by the GlobalUncertainBelief class to ensure that

each belief atom in a formula φ is contained within the domain of an epistemic state.

• pare - This method takes a LogicalExpression φ ∈L≥ as an input and recursively pares it

down as in Definition 2.4.2. It checks whether the qualitative operators (φ>ψ,φ≥ψ,not φ)

are true or false, returning a Tautology or Contradiction respectively. Otherwise it returns

a LogicalExpression ψ ∈L for which a λ-value can be determined directly.

• entails - This method takes a LogicalExpression as an input and creates a new empty

unifier. It checks that the formula is in NNF and that all of the belief atoms in the formula

are contained within the epistemic state’s domain. It then substitutes the unifier in order

to ground the formula and then determines the λ-values of the grounded formula φ and

it’s (strong) negation ¬φ. If λ(φ)>λ(¬φ) then the method returns the unifier and returns

null otherwise. This entailment function is used for all of the epistemic state instantiations

and is called by the global uncertain belief class when checking that a formula φ ∈L≥ is

entailed by a given epistemic state.

The EpistemicState class is provided in Appendix A, which outlines the implementation

of entailment for the abstract epistemic state class. The entails() method returns the relevant
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Figure 3.7: Epistemic States Class Diagrams

unifier for the logical expression (φ ∈L≥) if it is a logical consequence of the epistemic state and

null otherwise.

3.5.1.1 Compact Epistemic States

In Section 2.4 the compact epistemic state was introduced as an approach to achieve tractable

syntactic modelling and revision with uncertain input. This compact epistemic state is an

extension of the more general epistemic state detailed previously. It is defined as a mapping

W : At → (Z)∪{−∞,+∞})2 such that for a belief atom a, W(a) = (
+
µ,

−
µ) i.e. the weights associated
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with the positive and negative literals (a and ¬a respectively).

A class named Weights was created to maintain the positive and negative weights associated

with a belief atom in a compact epistemic state. It contained two class variables of type double,

representing the positive and negative weights. The compact epistemic state was implemented

as a class with a variable named weightedBeliefBase (of type HashMap<BeliefAtom, Weight>),

representing the mapping from belief atoms to their associated weights. It also contains a class

variable called totalWeight, representing TW =∑
a∈At max(W(a)), i.e. the total of all maximum

weights associated with each atom a. This value is used for determining the λ-value of a formula

and is updated easily during belief revision. The hash map ensures that every belief atom is

unique. When a compact epistemic state is instantiated it sets the domain in the EpistemicState

class, initialises the weightedBeliefBase and sets totalWeight to zero.

The theory behind revising a compact epistemic state was outlined in Section 2.4 and Bauters

et al. (2017) suggest that an implemented algorithm of complexity O(log2|At|) could be used.

Figure A.3 shows the implemented revision strategy. The use of HashMap’s and HashSet’s

provides constant-time O(1) operations for the get(), containsKey(), put() and remove() methods.

As a result, for a sequence of revisions I = 〈i1, ..., in〉, each taking the form (l,µ), where l ∈ Lit

and µ is the associated weight, the revision algorithm is linear-time O(n).

The algorithm implemented in the EpistemicState class for entailment is inherited by the

CompactEpistemicState class. However, the algorithm requires the child class (CompactEpis-

temicState) to implement methods for determining the λ-value of a given formula. Figure A.3

shows the implemented method getLambda(LogicalExpression). It takes a formula φ ∈L≥ as an

input and checks that it is ground. It then pares down the formula using the pare(LogicalExpression)

method inherited from the EpistemicState class. This simplifies the formula into the language

φ ∈L where the λ-value can be determined directly.

If any of the qualitative operators (φ>ψ, φ≥ψ or notφ) do not hold then the pare() method

will return a Contradiction. Next the formula is converted to Negation Normal Form (NNF) if it is

not already in NNF. The λ-value is then determined by traversing the formula tree and collecting

the bounded literals as outlined in Definition 2.4.10.

The formula’s type is recursively checked (e.g. conjunction, disjunction, greater than) and then

passed to the relevant getLambda() method. If the formula is a disjunction then the maximum

value of the two operands is returned. If the formula is a conjunction then it defines what literals

are true and adds them to the set of bounded literals.

If a formula has been reduced to a belief literal then it is evaluated by considering the set of

bounded literals. If the set of bounded literals contains the negation of the belief literal then it is

evaluated as inconsistent and returns the λ-value of a contradiction. If it is not inconsistent then

the weight is calculated as follows: starting from the sum of all maximum weights associated

with each atom (TW ), the maximum weight associated with each bounded literal is removed and

then the corrected weight of each bounded literal is added back. The result is the λ-value of the
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original formula.

If the formula φ is a tautology then the maximum weight associated with the models of φ is

returned. Conversely, if it is a contradiction then the minimum weight (−∞) is returned. For all

other formulas φ that are not contained in the language L (e.g. notφ, φ>ψ, φ≥ψ, φ=ψ and

φ 6=ψ), their λ-values are determined by λ(φ)=λ(pare(φ)).

The implementation of epistemic states detailed above is capable of modelling beliefs instanti-

ated with probability theory and possibility theory. Figures A.4 and A.5 show the Java classes for

the implemented probabilistic and possibilistic compact epistemic state instantiations, including

their modified revision strategies and methods for determining the λ-value of a logical expression

(formula). The epistemic state and compact epistemic state classes provide a general framework

that can be used to instantiate any other epistemic state representations. Future work could

address implementations of epistemic states instantiated with Dempster-Shafer theory.

3.5.2 Global Uncertain Belief

Here we discuss how an agents belief base can be implemented when utilising epistemic states

as the underlying representation of beliefs. As described in Section 2.4, a GUB is a set of logical

formulas over the language L≥ that also supports belief revision. As such, a GUB offers tractable

modelling and revision of uncertain beliefs in the BDI setting.

A GUB G is defined as a set G = {Φ1, ...,Φn} where each Φi is an epistemic state over a domain

A i ⊆ At i.e. a partition of the GUBs domain At. Therefore a GUB is defined by it’s domain and a

set of epistemic states.

Figure 3.8 shows the class diagram for the GlobalUncertainBelief class that was implemented.

It contains two class variables: one named "domain" of type HashSet<BeliefAtom>, representing

the entire domain of the GUB and one named epistemicStates of type

HashMap<HashSet<BeliefAtom>, CompactEpistemicState>, representing a mapping from each

compact epistemic state’s domain to itself.

The main methods for implementing the GUB class are detailed below:

• addEpistemicState(CompactEpistemicState) - this methods adds an epistemic state

to the set of epistemic states associated with the GUB. This method is used by the agent

parser when configuring an agent and adds all of the agents initial beliefs (epistemic states)

to its GUB.

• getRelevantEpistemicStates(LogicalExpression) - this method returns all of the epis-

temic states from the GUB that are relevant to the logical expression (formula) passed to

it. It is utilised by the entails() methods in the global uncertain belief class to retrieve the

relevant epistemic states. These epistemic states are then individually used to check if the

logical expression (formula) is entailed by them.
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Figure 3.8: GlobalUncertainBelief Class Diagram

• revise(BeliefLiteral, double) - this method is used to revise the GUB for a given belief

literal and weight pair (l,µ). Definition 2.4.6 defines GUB revision with an input formula

φ and associated weight. However, as only compact epistemic states were considered the

revision method was only required to revise the GUB for inputs of the form (l,µ). This

method is used by the executeAction() method in the revise belief action class. This method

would be integrated with an agents perception system and would be called when an agent

wishes to revise it’s belief base with newly perceived information. It can also be called if a

revise belief action is present in a plan body. The method is implemented as follows:

1. First it checks that the belief literal is grounded (contains no free variables). It does

this for the same reasons mentioned for epistemic state revision.

2. It then loops through each epistemic state and checks if the belief atom associated

with the input belief literal is contained within the epistemic state’s domain.

3. If it is, then it revises that particular epistemic state (with it’s own revision strategy)

and updates the GUB with the new epistemic state.

• languageContains(LogicalExpression) - this methods checks that the formula (repre-

sented as a logical expression) is contained in the language LG . Any formula φ ∈ L
A i≥

for i ∈ {1,k} (the epistemic states in the GUB) is also a formula in LG . This method
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iterates through the epistemic states contained in the GUB and calls the languageCon-

tains(LogicalExpression) method within the epistemic state class. This returns true if all of

the belief atoms in the formula are contained within one of the epistemic states and false

otherwise.

• getUnifiers(LogicalExpression) - this method returns the set of possible unifiers for a

logical expression (formula) with the GUB. It is called by the entails() method in the global

uncertain belief class because it needs to iterate through each possible unifier to check for

entailment. This method first retrieves all of the free variables from the logical expression.

It then iterates through each of the relevant epistemic states for the logical expression

and retrieves all of the possible substitutions that each variable could take. A recursive

method was then used to create the set of possible unifiers. Each unifier contains a different

combination of substitutions for each free variable. This method has a significant impact of

the computational complexity of the implementation but performs better than the original

depth first search algorithm that was implemented. Obtaining the set of possible unifiers

limits the practicability of the extended AgentSpeak(L) language and will be discussed

further in the discussion.

• entails(LogicalExpression) - this method is used to check if a logical expression (formula)

is a logical consequence (entailed) by the GUB and returns the unifier that made it a logical

consequence. This method is called when selecting applicable plans from the set of relevant

plans. This is where the plan context is evaluated to check if it is a logical consequence of

the belief base and therefore an applicable plan. If it is a logical consequence then the plan

is added to the set of applicable plans and substituted with the unifier that was found.

This method required finding all of the possible unifiers of the formula with the GUB

and then for each one attempting to traverse the formula tree and check for entailment.

A preorder traversal was used to traverse the formula tree and check for entailment. A

preorder traversal is logical here because it evaluates a particular node before proceeding

to it’s children. If successful it will return a unifier, backtrack and then evaluate the next

node at the same depth, thus preventing the need to evaluate it’s children. If unsuccessful

(and a binary expression) then the left and right child expressions will be evaluated (in that

order). If a particular node returns a null unifier then the traversal is aborted and restarted

with the next possible unifier. This method is an implementation of Definition 2.4.5 and

works as follows:

1. First, it substitutes the unifier it is passed into the logical expression (formula).

2. It then creates a HashSet of all the possible unifiers using the getUnifiers() method.

The HashSet ensures that no duplicates are present in the set.

3. It then attempts to find an applicable unifier by iterating through the HashSet and

performing a preorder tree traversal with following steps for each unifier:
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a) It checks what type of logical expression the formula is e.g. conjunction, disjunc-

tion, equals etc. The formula and the unifier are then passed to the appropriate

entails() method for that type of logical expression (formula).

b) In accordance with Definition 2.4.5 these methods are implemented as follows:

i. A tautology returns the unifier that it was passed as it signifies that the

formula is entailed.

ii. A contradiction returns null as it is not entailed and their is no applicable

unifier.

iii. For belief atoms, belief literals, strong negations, negation as fail-
ures, equals and not equals, the formula is first grounded using the possi-

ble unifier that it was passed. It then checks that the formula is contained in

the language LG by using the languageContains(LogicalExpression) method.

If it is, then it iterates through the relevant epistemic states (found using the

getRelevantEpistemicStates() method) and passes the formula and possible

unifier to the entails() method within the epistemic state class. This utilises

the pare() and getLambda() methods introduced earlier and returns an appli-

cable unifier if the formula is entailed and null otherwise. If the unifier is not

null then the tree traversal is continued and it is aborted if it is null.

iv. For conjunctions the same process is followed, however, if the formula is

not contained in the language LG then the operands are evaluated separately.

This is in line with the preorder tree traversal. First there is an attempt

to evaluate the conjunction directly but if this fails then the left and right

child expressions are evaluated. The left conjugate is passed into the entails()

method with the possible unifier. The entails method is thus recursive. If the

left conjugate is entailed with the possible unifier it will return a new unifier

containing further substitutions. Otherwise it will return null, indicating

that the formula is not entailed with the possible unifier. The right conjugate

is then passed into the entails() method with the unifier returned from the

call to the entails() method with the left conjugate and possible unifier. This

returns a unifier that determines if a formula is entailed by the GUB. If

the unifier is null then it indicates that the formula is not entailed and the

tree traversal is aborted. Otherwise the traversal is continued with the new

unifier.

v. For disjunctions a similar approach is followed, however, this time only

one of the operands (disjuncts) is required to return a unifier. If one of the

operands returns a unifier then the algorithm backtracks and evaluates the

next node.

vi. For greater than expressions the same process is followed as for belief atoms
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(i.e. it attempts to evaluate the expression directly), except for if the formula

is not contained in the language LG . In this case the formula is checked to

ensure that it is ground and that it’s left and right operands are both con-

tained within the language LG . If they are, then for each operand the relevant

epistemic states are found for their strong negations. The epistemic states

associated with the left and right operands are compared and if they are not

of the same type then an exception is thrown. This is because epistemic states

instantiated with different uncertainty theories cannot be compared with

qualitative operators. The λ-values associated with the two epistemic states

are then retrieved using the getLambda() method from the compact epistemic

state class. These two λ-values are then compared in accordance with Defini-

tion 2.4.2. If the left operand’s λ-value is less than the right operands λ-value

then the possible unifier is returned, signifying that the expression is entailed.

This results in the next node being evaluated. Otherwise null is returned and

the tree traversal is aborted.

vii. For greater equals than expressions the same process is followed as for

greater than expressions, except that in the comparison of the λ-values the ≤
operator is used instead of <.

4. If for a given possible unifier the evaluation of a node returns null, then the tree

traversal is aborted and restarted with the next possible unifier.

5. If for a given possible unifier the whole formula tree has been traversed and the

resulting unifier is not null, then the formula is said to be entailed by the GUB. The

relevant plan is then added to the set of applicable plans with the resulting unifier

substituted in it’s plan body.

3.6 Goals

Now that the main extensions have been detailed (logical expressions and the belief base) the

remainder of this section will outline how the rest of the extended version of AgentSpeak(L) was

implemented. It will focus on how the new belief base and language for writing plan contexts and

test goals was incorporated into the remainder of the implementation.

AgentSpeak(L) defines two types of goals, achievement goals and test goals. Achievement

goals are formulated by an atomic formula prefixed with a ’!’. Test goals are formulated by an

atomic formula prefixed with a ’?’. Achievement goals define states of the world that the agent

wants to achieve where the atomic formula is evaluated as true. Test goals state that the agent

wishes to check whether the atomic formula can be unified with it’s belief base.

Achievement goals are found in plan body’s (taking the form of an action) which when executed

add an equivalent internal event (representing a goal the agent wishes to achieve) to the event set.
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Such events can then trigger plans as relevant plans by unifying with event triggers containing

the same achievement goal. The functionality of achievement goals is thus dependent on whether

they are associated with an event trigger or an action. Test goals, however, are only found in

plan body’s as actions. They are used to further instantiate free variables in the remainder of

the plan body by unifying themselves with the belief base. Goals were implemented the same in

both AgentSpeak(L) and the extended version and the class inheritance structure can be seen in

Figure 3.9.

Goal

AchievementGoal

TestGoal

Figure 3.9: Class inheritance structure for AgentSpeak(L) goals

In AgentSpeak(L) the belief base consists of a set of belief literals and test goals take the form

of first-order logic terms. Test goals were implemented as terms which meant that they could be

tested for unification with each of the terms associated with the belief literals in the belief base.

In the AgentSpeak(L) implementation all goals contain a term as their main class variable. As

goals are found in both event triggers and in plan body’s they require a substitution method that

can replace any variables with the relevant substitution. Below is an example of a test goal (in a

plan body) in AgentSpeak(L):

1 / / Be l i e f Base
2 at ( l ocat ion ( 1 ) ) .
3

4 / / Plan Body
5 ? at ( l ocat ion (X) ) ; move ( locat ion (X) ) .

The test goal consists of a term and would return a unifier containing the first substitution

between at(location(X )) and the belief base. For example, if the belief base contained the

belief atom at(location(1)) then it would return the substitution {X /1}. This would lead to the

remainder of the plan body being instantiated with the substitution {X /1}, resulting in the action

move(location(1)).

In the extended implementation test goals contain class variables for both terms and logical

expressions (formulas). However, as the belief base no longer contains belief literals it is not

possible to use test goals as terms (representing belief atoms). In future work the belief base

could be extended to incorporate both a set of belief literals and a GUB. Test goals could then

take the form of either terms or logical expressions. However, in this implementation test goals

must take the form of a logical expression as shown in the following example:

1 / / Be l i e f Base
2 **( at ( l ocat ion ( 2 ) ) , 0 .9 ) . / / p r o b a b i l i s t i c
3 **( at ( l ocat ion ( 1 ) ) , 0.1 ) . / / p r o b a b i l i s t i c
4
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5 / / Plan Body
6 ? at ( l ocat ion (X) ) > at ( l ocat ion (Y) ) ; move ( locat ion (X) ) .

In this scenario the test goal would check if an epistemic state in the belief base entailed the

formula at(location(X ))> at(location(Y )). It would return the substitution {2/X ,1/Y }, resulting

in the remainder of the plan being instantiated as move(location(2)). The functionality sur-

rounding goals will be detailed in the sections on event triggers and actions when discussing

their corresponding event triggers and actions.

3.7 Triggering Events

When an AgentSpeak(L) agent acquires new goals or perceives it’s environment it may trigger

the addition or deletion of goals or beliefs. These are referred to as triggering events. There are

four triggering events defined in AgentSpeak(L): the addition and deletion of both beliefs and

goals. The class inheritance structure shown in Figure 3.10 was used to implement triggering

events for AgentSpeak(L).

Event Trigger

BeliefEventTrigger

AddBeliefEventTrigger

DeleteBeliefEventTrigger

GoalEventTrigger

AddGoalEventTrigger

DeleteGoalEventTrigger

Figure 3.10: Class inheritance structure for AgentSpeak(L) event triggers

In the extended implementation there are only three triggering events as the addition and

deletion of beliefs is no longer supported. Instead, agents are only capable of revising their beliefs.

However, these classical rules can be defined as belief revisions: ◦(φ,maxG) for belief addition

and ◦(φ,minG) for belief deletion.

The main role of the event trigger class is to unify events in the event set with relevant plan’s

event triggers. This functionality is used by the agent’s interpreter to select all of the relevant

plans from the plan library for a given event. As a result, the event trigger class is used by plans

for their event triggers and by events in the event set. The class inheritance structure and class

diagrams used to implement event triggers are shown in Figure 3.11. The belief event trigger and

goal event trigger classes contain variables for their associated belief literal or goal respectively.

The revise belief event trigger class also contains a class variable of type term, representing

the corresponding revision weight. This was implemented as a term for unification and sub-

stitution purposes. For example, an agent may perceive it’s environment and revise it’s belief
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Figure 3.11: Event Trigger Class Diagram

base with ∗(water(location(1)),0.9) and add a corresponding external event with a revise belief

event trigger to the event set. This indicates that it believes their is water at location(1) with a

probability of 0.9. A plan in the plan library may take the form:

1 *( water ( l ocat ion (X) ) , W) : at ( l ocat ion (X) ) > 0.9 && W >= 0.9 <− collectWaterSample .

If the event is then selected from the event set then this plans event trigger would unify with the

event trigger associated with the selected event and generate the relevant unifier {X /1,W/0.9}.

The plan would then become a relevant plan and it’s context (substituted with the relevant

unifier) would then be evaluated.

3.7.1 Unification

The implementation of event trigger unification is detailed here. Event triggers only unify if they

are of the same type, for example, two add goal event trigger’s, two delete goal event triggers

or two revise belief event trigger’s. If two event triggers of different types attempt to unify the

unify() method will return null. If the event triggers are of the same type then the unify() method

operates as follows:

• For goal event triggers the unify() method retrieves the goal associated with each event

trigger. It then retrieves the term associated with each goal and calls the term’s unification

algorithm, which returns a unifier if successful or null otherwise.

• For revise belief event triggers the unify() method retrieves the belief literal associated

with each event trigger. It then calls it’s associated belief literal’s unify() method, passing
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to it the other belief literal. Belief literal’s only unify if they are either both positive or

both negative. The belief literal’s unify() method then retrieves the belief atom associated

with each belief literal and then the term associated with each belief atom. It then calls

the term’s unification algorithm, which returns a Unifier if successful or null otherwise.

If this Unifier is not null then the algorithm retrieves the weights of each event trigger

(which are term’s) and performs substitution using the previously found unifier. These new

substituted weights (which are still term’s) are unified by calling their unification method.

If this unification is successful then the unifiers are combined and returned, otherwise null

is returned.

The implementation of goal event trigger’s was the same in AgentSpeak(L) and the extension.

However, as detailed above, the add and delete belief event trigger classes were removed and

replaced with the revise belief event trigger class. The add and delete belief event trigger classes

utilised a unification algorithm very similar to that of the goal event trigger’s. The only difference

being that the term’s were retrieved from the associated belief atom and not from an associated

goal.

The new event trigger can be utilised in the same way as both the add and delete event

triggers and also possesses more expressive functionality. For example, a plan’s event trigger

may only unify with the selected event if the weight associated with the revision is of a specific

value. The plan library could therefore contain multiple plans with revise belief event triggers for

the same belief literal but with different associated weights.

The weight associated with a plan’s revise belief event trigger may take the form of a variable

which is instantiated by the weight associated with the selected event. Multiple plan’s could then

become relevant and their context’s would be instantiated with the substitution. Their context’s

could then reason over the value of this weight and the appropriate plan would be selected as

an applicable plan. For example, an agent that is trying to collect water samples may have a

compact probabilistic epistemic state regarding the presence of water at different locations. This

agent may then have the following plans in it’s plan library.
1 *( water ( l ocat ion (X) ) , W) : W > 0.7 <− +! collectWaterSample ( l ocat ion (X) ) .
2 *( water ( l ocat ion (X) ) , W) : W >= 0.3 && W <= 0.7 <− +! perceive ( l ocat ion (X) ) .
3 *( water ( l ocat ion (X) ) , W) : W < 0.3 <− +! explore .

These plans represent three different cases:

• W> 0.7 - This indicates that the agent is fairly certain that there is water at location(X)

and thus creates an internal event with an achievement goal to collect a water sample from

location(X).

• W>= 0.3 && W<= 0.7 - A probability value of 0.5 indicates that the agent is ignorant

about the presence of water at location(X). It therefore creates an internal event with an

achievement goal to perceive location(X), with the hope of strengthening or weakening it’s

belief.
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• W< 0.3 - This represents the case that the agent is fairly certain that there is no water

present at location(X). It therefore creates an internal event with an achievement goal to

continue exploring it’s environment (and ignore location(X)).

3.8 Actions

In AgentSpeak(L) the body of a plan consists of a sequence of actions that can take different

forms. An agent has a predefined set of actions that it can perform on it’s environment and these

are referred to as environment action’s. These actions are represented as first order terms, such

as move(location(2)). The action is defined by the atom move and has an argument location(2)

that provides a specific instance of the action. Environment actions inform the relevant section of

the agent’s control architecture, which then performs the action. In simulated environments the

action is defined as part of the environment.

AgentSpeak(L) also defines actions for test goals (?), achievement goals (?), addition of belief

literals (+b) to the belief base and deletion of belief literals (−b) from the belief base. In the

extension there is no addition or deletion of beliefs from the belief base but instead revision of the

GUB with a belief literal and associated weight. Figure 3.12 shows the class inheritance structure

that was used to implement AgentSpeak(L) actions. Figure 3.13 shows the class inheritance

structure and the class diagrams for the implemented actions in the extended version.

Action

BeliefAction

AddBeliefAction

DeleteBeliefAction

EnvironmentAction

GoalAction

AchievementGoalAction

TestGoalAction

Figure 3.12: Class inheritance structure for AgentSpeak(L) actions

All action classes contain an executeAction(agentName, intention, unifier, beliefBase, eventSet,

environment) method, which performs the required action and returns the unifier to be used

for subsequent actions in that plan body. All of the executeAction() methods return the original

unifier that they are passed except for the test goal action executeAction() method, where any

further variable instantiations are added to the unifier that is returned. The executeAction()

method for each action class is detailed below:

• EnvironmentAction - For environment actions the executeAction() method starts by
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Figure 3.13: Action Class Diagrams

substituting the unifier into the action. In non simulated environments the substituted

action would be passed to the agent’s control architecture and the relevant action would

be executed. However, this platform uses a simulated environment so it then calls the

scheduleAction() method from the environment class and passes it the agents unique name

and the substituted action. The scheduleAction() method is synchronised, ensuring that

only one agent (thread) can execute the method at any given time. This prevents the

environment from experiencing a corruption of state. It also ensures that any changes to

the environment (by a single agent) are visible to all other agents (threads).

• AchievementGoalAction - For achievement goal actions the executeAction() method

substitutes the applicable unifier into the achievement goal. This is the unifier that made

the plan’s context a logical consequence of the belief base. It then generates an internal

event, which requires an event trigger and an intention.

– A new add goal event trigger is instantiated with the goal associated with the achieve-

ment goal action. This is used as the event trigger.

– The intention that was passed to the executeAction() method is used as the intention

because internal events are associated with the intention that created them.

This internal event is then added to the agent’s event set.

• TestGoalAction - For test goal actions the executeAction() method simply retrieves the

logical expression (formula) associated with the test goal action and passes it to the belief
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base’s entails() method along with the unifier it is to be instantiated with. The entails()

method returns a new unifier with further variable instantiations which is then returned

by the executeAction() method. This new unifier is then used for variable instantiation in

the rest of the plan body.

• ReviseBeliefAction - For revise belief actions the executeAction() method first substitutes

the unifier into both the belief literal and the weight (which is a term) associated with

the revise belief action. It then calls the revise() method of the GUB and passes it the

substituted belief literal and weight, which is now a double number. It then instantiates an

external event, which requires an event trigger.

– A new revise belief event trigger is instantiated with the substituted belief literal and

weight associated with the action.

– The instantiation of an external event does not require an intention because they

generate their own, representing a new focus for the agents acting in the environment.

This external event is then added to the agent’s event set.

3.9 Plans

As discussed in Section 2.2, AgentSpeak(L) agents consist of a predefined set of plans. Each plan

represents an agent’s response to a given scenario. Plans consist of three components:

1. Event trigger - The AgentSpeak(L) interpreter operates by selecting an event to respond

to from it’s event set. A plan’s event trigger determines when a plan is a relevant plan for

handling that event. If the plan’s event trigger unifies with the event trigger associated

with the event then it is added to the set of relevant plans.

2. Context - A plan’s context is used to select plans that are applicable to the agent’s current

state from the set of relevant plans. The agent performs detailed reasoning by checking

if the context is a logical conqeuence of it’s current belief base. If it is, then the plan is

selected as an applicable plan. Plans are applicable in different scenarios dependent on the

agent’s current belief base.

3. List of actions - The body of a plan consists of a sequence of actions or (sub)goals that the

agent should perform. It specifies goals that the agent wishes to achieve or test and actions

that it should execute.

Figure 3.14 shows the class diagram for the implementation of plans in the extended version

of AgentSpeak(L). Plans were implemented almost the same in AgentSpeak(L) and the extension.

The plan class consists of three class variables, representing the plan’s event trigger, context and
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Figure 3.14: Plan class diagram

sequence of actions. The event trigger was of type event trigger and the context of type logical

expression because they take the form of any formula from language L≥. In AgentSpeak(L),

however, the context took the form of a queue of belief literals. This was because the context

was simply a conjunction of belief literals and thus did not require any complicated methods for

entailment, just the ability to iterate over each belief literal. The plan body (sequence of actions)

was implemented as an array list of actions as it provided O(1) complexity for it’s get() and add()

methods. When executing a plan body the interpreter simply accesses the relevant action using

the get() method. Its uses an integer index maintained as a simple counter.

The enhanced plan selection capabilities can be showed by means of an example. Below are

two plans, the first written in AgentSpeak(L) and the second written in the extended version.

The goal of the plans is to explore mars and find water or ice samples.

1 +! exploreMars : water_or_ice ( l ocat ion (X) ) && at ( locat ion (Z ) ) <− ! proceed ( locat ion (Z ) , l o cat ion (X) ) .

1 +! exploreMars : water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (Y1) ) && water_or_ice ( l ocat ion (X) )
>= water_or_ice ( l ocat ion (Y2) ) && water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (Y3) ) &&

at ( locat ion (Z ) ) >= at ( l ocat ion (X) ) && X \== Z && X \== Y1 && X \== Y2 && X \== Y3 && Y1 \== Y2
&& <− ! proceed ( locat ion (Z ) , l o cat ion (X) ) .

An agent has a set of predefined plans, known as the plan library. The plan library class was

implemented as an array list of plans. The only operation applied to the plan library consists of

iterating through each plan, in an attempt to unify each plan’s triggering event with the event

that the agent has selected to respond to. Array list’s provide constant time complexity when

performing iterator operations.

3.10 Operational Semantics

So far the underlying components and structure of "Uncertain" AgentSpeak(L) have been intro-

duced. This section will now focus on how these components and their mechanisms are utilised

by the agent to achieve autonomy i.e. how the agent’s interpreter functions. Agent’s also manage

a set of events and a set of intentions that are used by it’s interpreter. These will be introduced

here.
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3.10.1 Events

In the original AgentSpeak(L) events can be defined as either external or internal, dependent on

whether they are generated due to the agents perception of it’s environment or from a subgoal

within a plan. This is the same in the extended language and the class inheritance structure and

diagrams used to implement events are shown in Figure 3.15. The event class consists of two

class variables, an event trigger and their corresponding intention. External events generate

their own new intention and internal events inherit the intention from the plan that generated

them.

Figure 3.15: Uncertain AgentSpeak(L) Event class diagram

Agents manage a set of events and use it to select plans from their plan library that are

relevant to that particular event. The event set is required to add and remove events, however,

the event selection function is not defined in AgentSpeak(L). In Uncertain AgentSpeak(L) the

selectEvent() method was implemented as a queue. This was achieved by implementing the event

set as a linked list. It’s add method appends to the end of the list and it’s poll method retrieves

and removes the head (first element) of the list. The event set was implemented as a linked list

because adding and removing elements provides O(1) performance. The selectEvent() method is

implemented in the agent class so that a programmer can easily modify it by extending the agent

class and overriding the method.

3.10.2 Intentions

Intentions represent an agent’s course of action to respond to a particular event. They take

the form of a stack of partially instantiated plans. Figure 3.16 shows the class diagram for the

implementation of intentions.

In order to implement intentions first the intended means class shown in Figure 3.17 had to

be created. The intended means class represents a partially instantiated plan and so contains

class variables for a plan and unifier. It also contains a class variable (index) that is used by the

class for selecting the relevant action from the plan. The plan body consists of a list of actions

and once an action is executed the intended means class increments it’s index variable to signify

that the next action should be considered.
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Figure 3.16: Uncertain AgentSpeak(L) Intentions class diagram

Figure 3.17: Uncertain AgentSpeak(L) Intended Means class diagram

The main functionality of the intended means class is to execute the relevant action from the

plan body. The executeAction() method selects the relevant action from it’s plan’s body and calls

it’s executeAction() method, which performs the required action. The action’s executeAction()

method returns a unifier that the intended means sets as it’s unifier and will use in the execution

of subsequent actions. All actions return the original unifier except test goals that return a new

unifier with any extra substitutions added.

The intention class contains a variable called plansUnified, representing the stack of partially

instantiated plans associated with an intention. This was implemented as a linked list of intended

means as linked lists can act as stacks with add and remove methods of performance O(1). The

add method adds the intended means to the end of the list and the pollLast() method retrieves

the last element from the list, essentially acting as a stack.

The main functionality of an intention is it’s execution, which is performed by it’s executeIn-

tention() method. This method retrieves the intended means from the top of the stack and calls

it’s executeAction() method. This causes the next action from the intended means to be executed

and if an achievement goal action is executed then the method returns true and false otherwise.

If it returns true (i.e. an achievement goal is created) then the agent should stop executing the

current intended means and restart it’s interpretation cycle by selecting a new event from the

event set. For this reason if it returns true then the executeIntention() method finishes. If it
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returns false then it signifies that the intended means has been executed and so it is removed

from the top of the intention. When an intention is selected from the intention set it is removed

from the intention set. For this reason if not all of the intended means have been executed then

the intention is re-added to the intention set.

At a high level there are no major differences between the implementation of intentions in

AgentSpeak(L) and Uncertain AgentSpeak(L). The only differences occur at a lower level in the

structure of plans and the mechanisms associated with the execution of different types of actions.

The set of intentions is implemented as a stack using a linked list (for similar reasons). The

intention selection function is not defined in AgetnSpeak(L) and is left for the user to define. In

Uncertain AgentSpeak(L) the selectIntention() method simply pops an intention from the top of

this stack. Again, this method was implemented in the agent class so that a programmer can

easily modify the method.

3.10.3 Agent Interpreter

An AgentSpeak(L) (and Uncertain AgentSpeak(L)) agent is defined as a class containing it’s

interpreter. Figure 3.18 shows the class diagram for the Uncertain AgentSpeak(L) agent class.

In AgentSpeak(L) an agent consists of a belief base, a pre-defined plan library, a set of events

and a set of intentions. In order to develop a simulation environment, agents were also given a

name, id, an environment that they could act on and perceive from and event listeners so that

the GUI could visualise the agent’s "thoughts". The main difference in Uncertain AgentSpeak(L)

is that the belief base takes the form of a GUB and the plan library consists of plans written in

the extended language.

The main difference in Uncertain AgentSpeak(L) is the agent’s interpretation cycle, which is

defined in the run() method. The three selection functions (event selection, plan selection and

intention selection) were also implemented in the agent class for the reasons discussed previously.

The remaining methods in the agent class were added for the development of the simulation

environment and will be discussed in Section 4.1. Figure 3.19 shows the interpretation cycle for

an Uncertain AgentSpeak(L) agent. This will now be discussed here.

1. Event Selection - When an agent is initialised it’s initial goals are added to it’s event

set. At the start of an interpretation cycle the agent’s selectEvent() method is called. As

mentioned earlier this is implemented as a queue because it is not defined in AgentSpeak(L)

but intended to be designed by the user. This method was implemented in the agent class

so that it can easily be modified if the programmer requires. Extending the agent class and

overriding the method would enable a programmer to define their own selection function.

2. Plan Selection - The agent’s selectPlan(Event) method is then called and passed the event

that was selected from the event set.

55



CHAPTER 3. EXTENDING AGENTSPEAK(L) TO MODEL AND REASON WITH
UNCERTAINTY

Figure 3.18: Uncertain AgentSpeak(L) Agent class diagram

a) Relevant Plan Selection - The agent’s selectRelevantPlans() method is then called

to select the the relevant plans from the plan library. This method iterates through all

of the plans and calls the event trigger’s unify() method in attempt to unify it with

the plan’s event trigger. This is the event trigger associated with the selected event. If

unification is successful then it will return a unifier and null otherwise. If a unifier is
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Figure 3.19: Uncertain AgentSpeak(L) interpreter

returned then a new intended means is created with the plan and the relevant unifier,

which is then added to the set of relevant plans.

b) Applicable Plan Selection - If the set of relevant plans is not empty then the

agent passes the set of relevant plans (set of intended means objects) to the agent’s

selectApplicablePlans() method. This method then pops the top intended means from

the set of relevant plans one by one and calls the belief base’s entails() method in an

attempt to unify the plans context with the belief base. If successful this will return

a unifier and a new intended means is created with the plan associated with the

intended means and the new (applicable) unifier. This new intended means is then

added to the set of applicable plans. Once all of the relevant plans have been tested

the selectApplicablePlans() method returns the set of applicable plans (which is a set

of intended means).

Finally, the selectOption(Deque<IntendedMeans>) method is called to select a single plan

from the set of applicable plans. This selection function SO is also not defined in AgentS-

peak(L) and is left for the programmer to implement. In Uncertain AgentSpeak(L) this is

implemented as a queue, giving priority to plans that are defined earlier in the plan library.

Again, this selection function can easily be altered by a programmer by extending the agent

class.
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3. Add Intention - The selected plan is then added to the top of the intention stack associated

with the selected event. If the event is external then the intention stack will be empty and

if internal the intention stack will contain partially instantiated plans (intended means)

associated with that particular event. The intention is then added to the intention set.

4. Select Intention - The agent then calls it’s selectIntention() method that removes the last

intention from the list. This is equivalent to popping the top element from a stack. This is

logical as the agent should select a course of action (intention) for dealing with the most

recent event. Again, this method can easily be modified by a programmer.

5. Execute Intention - The final step in the agent’s interpretation cycle is to execute the

selected intention. This is achieved by calling the executeIntention() method associated

with the intention. This method was detailed earlier in Section 3.10.2.
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4
MAS SIMULATION ENVIRONMENT

This chapter details the research methodology that was employed in response to the initial

research objectives regarding a platform for developing and simulating extended agents.

Section 4.1 focuses on how the general simulation environment was constructed so that

agents can perform actions on and perceive an environment. This is a general environment

that a programmer would extend to implement a custom simulation environment. Section 4.2

then outlines how the agent programming language and the environment can be combined to

define and simulate a MAS. In the final section an example mars exploration MAS that was

implemented using the development environment is detailed and discussed.

For the readers convenience the overall system architecture is detailed in Figure 4.1. It

gives a basic outline of how the different components interact with each other. The individual

components will be discussed in more detail throughout this chapter.

Each of the agent files in Figure 4.1 is written in this extended language detailed in Chapter 3.

When these files are parsed the JVM instantiates Agent objects for each agent defined in the MAS

project file. Essentially, each agent block on the diagram consists of an extended AgentSpeak(L)

interpreter that acts on and perceives the environment. The overall process for creating and

simulating MAS in the implemented platform is detailed below:

1. The user creates:

• Files for each type of agent they wish to specify. Each agent file contains the agent’s

initial beliefs, the goals they wish to achieve and their predefined plan library. These

files are written in the extended AgentSpeak(L) programming language that is defined

in Section 3.

• An environment class for their system by extending the base environment class
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MAS Project

Executor Service
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parse file

Figure 4.1: MAS project architecture

provided. This models how the agents actions effect the environment and how the

agents update their percepts from the environment.

• A MAS project file that defines the projects environment and agents.

2. The MAS file is then parsed and an instance of the MASProject class is created. This

instantiates:

• The environment that was specified.

• An executor service with a thread for each agent to run on.

• The number of each type of agent specified in the project file. The extended AgentS-

peak(L) parser is used to parse the agent files and create instances of the Agent class

for each agent.

3. The MASProject class then runs all of the agents simultaneously using the executor thread.

The rest of this chapter will now introduce, describe and justify the implementation of the

development environment.

4.1 Simulation Environment

Chapter 3 outlined the implementation of the Uncertain AgentSpeak(L) programming language.

Agent’s programmed in this language can be tested and deployed in real world systems by creat-

ing a custom interface between Uncertain AgentSpeak(L) and the system. The only requirement

is that the hardware is capable of running the Java Virtual Machine. However, in most scenarios

it is preferred to develop agents and test them in a simulated environment. This section will
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detail the implementation of a general simulation environment. The simulation environment pro-

vides the core functionality for simulating agents. Programmers can develop custom simulation

environments by extending the environment class. MASs can then be simulated by programming

agents (in .agent files), extending the base environment class and writing a MAS configuration

file (.mas) specifying the agents and environment to be simulated.

4.1.1 Environment

The main class for implementing simulated environments is shown in Figure 4.2. This class has

two main functions: enable agents to act on the environment and to perceive the environment.

Each agent is ran on a separate thread so the environment had to be able to function without any

thread interference or memory consistency issues. The main functionality of the environment is

detailed below.

Figure 4.2: Environment class diagram

1. Event Listeners - In order for the environment to function and inform agents of their

environment perceptions an EnvironmentEventListener interface was created. An accompa-

nying EnvironmentEvent class was created that contains an array list of strings containing

a particular agent’s perceptions.

a) The agent class implements the environment event listener and contains a method

handleEnvEvent(EnvironmentEvent). This method iterates through the agent’s per-

ceptions and calls the agents reviseBelief(String) method, which parses the string and

instantiates a new revise belief action object. It then calls the executeAction() method

associated with revise belief action method.
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b) The environment class also contains methods for adding listeners and notifying

listeners.

2. Perception - The environment class has a class variable called agentPercepts. This is a

concurrent hash map containing mappings from an agents name to an array list of strings

containing that agent’s percepts. This variable is used alongside event listeners to inform

agents when they have new percepts.

a) upToDateAgents - this class variable is a synchronised hash set that maintains a

record of which agents have been sent their perceptions. When an agent is sent it’s

perceptions the agents name is added to the upToDateAgents set and when an agent

receives a new perception it’s name is removed. This ensures that only agents with

new perceptions are sent their perceptions.

The environment class also has four methods for dealing with an agents percepts:

i. addPercept() - this method accepts a string containing the agents name and

an array list of it’s perceptions. This method adds the agents perceptions to

the agentPercepts class variable. It should be used by a programmer to add

perceptions.

ii. removePercept() - this method removes a percept for a single agent and again

should be used by the programmer whenever they wish to remove a perception

from agentPercepts.

iii. clearPercepts() - this method clears all perceptions from agentPercepts.

iv. clearPercepts(String) - this method clears all the percepts for the agent whose

name is passed to the method.

3. Actions - When an agent seeks to perform an action on the environment it calls the

environment’s scheduleAction() method and passes the environment it’s name and the

environment action it wishes to perform.

a) The environment class has a method called executeAction() that a programmer must

override in their environment class. This method is required to parse the environment

action string and perform the required action on the environment. This method is

synchronised to ensure that only one agent (thread) is able to modify the environment

at a given time. This prevents issues with thread interference and memory consistency

errors.

b) The environment class also has a method called runAndWait() which accepts a

runnable, queues it on the environment thread (JavaFX thread) and waits for it’s

execution. This ensures that the environment’s view (discussed later) is updated

without any issues.
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The scheduleAction() method creates a runnable that calls the environments executeAction()

method and then it’s notifyListener(String) method. This runnable is then passed to

the runAndWait() method that ensures all agents actions are performed without any

interference and that the environments view is updated without freezing. It also ensures

that the agent receives it’s perceptions of the environment.

4.1.2 Grid World

When creating a custom environment for simulating agents it is usually preferred to maintain a

model class for the environment that maintains all of the data and a view class that is used to

visualise the model. Many systems are simulated in a grid world so base implementations of a

grid world model and grid world view were created. The class diagrams of these base classes are

shown in Figure 4.3.

If a programmer wishes to implement a grid world environment then they can create a model

class extending GridWorldModel and a view class extending GridWorldView. The implementation

of the grid world will not be discussed here as the method names are enough to describe their

function.

4.2 Multi-Agent System Projects

This section will detail how all of the previous work is combined to enable a user to define and

simulate a system with multiple Uncertain AgentSpeak(L) agents. A MAS project requires an

environment and multiple instances of agents programmed in Uncertain AgentSpeak(L).

4.2.1 Syntax

A very simple text file can be used to define a MAS, the grammar for writing these files is shown

in Figure 4.4.

A MAS project requires the definition of four components:

1. name - A name for the MAS project.

2. infrastructure - An underlying infrastructure for the the MAS. Only a centralised infras-

tructure was implemented but in the future it could be extended to include others. For

example, Simple Agent Communication Infrastructure (SACI) (J. Hübner and Sichman

2009) and Java Agent DEvelopment Framework (JADE) (TILAB 2009).

3. environment - The name of the environment class must be specified along with any

arguments used in it’s constructor.

4. agents - The file names of each agent (written in Uncertain AgentSpeak(L)) and the

number to instantiate.

63



CHAPTER 4. MAS SIMULATION ENVIRONMENT

a

b

Figure 4.3: Base class diagrams for implementing a grid world environment, figure (a) shows the
base grid world model class diagram and figure (b) shows the base grid world view class digram

The MASPorject class was created to manage a project. When the .mas configuration file is

parsed it instantiates a MASProject object. It’s class digram can be seen in Figure 4.5.

This class contains a list of the agents instantiated by the parser as well as the environment

object that was created by the programmer. It also contains an executor service that is used

execute each agents reasoning cycle on a separate thread and an agent console that is used to

display the mental "thoughts" of each agent.

4.2.2 Infrastructure

At the start of this chapter the overall MAS development environment architecture was in-

troduced. Figure 4.1 shows the centralised architecture that was implemented. This enabled
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mas_project ::= ’MAS’ name ’{’ content ’}’ EOF
name ::= <ATOM>
content ::= infrastructure environment agents
infrastructure ::= ’infrastructure:’ centralised
centralised ::= ’centralised’
environment ::= ’environment:’ ’env.’ env_class_name ’(’ arguments_list ’)’
env_class_name ::= CLASS_NAME
agents ::= ’agents:’ agent+
agent ::= agent_name NEWLINE | agent_name ’#’ numAgents NEWLINE
agent_name ::= <ATOM>
numAgents ::= <INTEGER>
arguments_list ::= arg | arg ( ’,’ arg )+
arg ::= <NUMBER> | <STRING> | ’true’ | ’false’

Figure 4.4: BNF Grammar for defining MASs

Figure 4.5: MASProject class diagram

all of the agents and the environment to be run on a single computer. However, as discussed

previously, this infrastructure is limited in the number of agents that can be run and depends

on the capabilities of the JVM and the operating system. As future work the ability to add a

configurable pool of threads that are shared by the agents could be used to remove this limitation.

The agents would share a reduced number of execution threads, thus reducing the computational

burden but also reducing concurrency.

4.3 Mars Exploration Scenario

In order to measure the performance of both the extended AgentSpeak(L) language and the

implemented framework an example Mars exploration scenario was constructed.

4.3.1 Background

The aim of this system is to maximise the scientific discovery from a team of exploration agents

on Mars. In particular, discovering evidence for the presence of:
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• Water/ice

• Fossils

• Living organisms

Different types of locations (characterised by land features) have been identified as more

likely to contain evidence of each item. The objectives of the system are as follows:

1. Explore local terrain, locating areas of interest and improving certainty in the presence of

items in existing areas of interest.

2. Collect samples from areas of interest.

3. Analyse collected samples for evidence of:

(A) Water/ice

(B) Fossils

(C) Living organisms

The only prior knowledge going into the mission is that of nearby land features (determined

from satellite imagery). Using this information the agents are initialised with beliefs regarding

the likelihood of finding water/ice, fossils and living organisms at different locations. Predicting

the presence of water/ice, fossils and living organisms is difficult due to insufficient information.

For this reason, the beliefs associated with their presence at different locations are instantiated

with possibility theory. In light of new information, agents are able to update their beliefs. If

new information invalidates previous beliefs then this will be captured by the beliefs possibilistic

instantiation.

The system consists of 3 types of agents: 1) type A sampling agents, 2) type B sampling agents

and 3) sample analysis agents. The overall system consists of 3 agents: 1 type A sampling agent,

1 type B sampling agent and 1 sample analysis agent.

Sampling agents navigate the environment and collect samples. There are two types of

sampling agents, each capable of collecting samples of different types:

• Type A sampling agents can collect samples determining the presence of water,

• Type B sampling agents can collect samples determining the presence of fossils and

living organisms.

Sample analysis agents receive samples from sampling agents. They analyse these samples

and determine the presence of water/ice, fossils or living organisms. Analysis agents update

beliefs associated with the presence of water/ice, fossils or living organisms to be certain. In

future work this would be used to coordinate excavation agents that are capable of performing

further analysis on high priority locations.
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4.3.2 Environment

The Mars environment was created by extending the environment class and implementing a

model to manage the data and a view to visualise it. The environment is a 2D grid world that

was created by extending the GridWorldModel and GridWorldView classes. The class diagrams

for the implemented mars environment are shown in Figure 4.6.

a

b

c

Figure 4.6: Class diagrams for (a) the mars environment class (b) the mars model class and (c)
the mars view class

The model extends the grid world model class which used a class variable called grid, which

is a 2D array of integers to model the world. The integer value at a particular position in the grid

defines what object is present in the grid. The mars model defines the following objects that can

be present in a grid cell:

• Sample A Agent

• Sample B Agent

• Analysis Agent

• Water or Ice

67



CHAPTER 4. MAS SIMULATION ENVIRONMENT

• Fossil

• Living organisms

The mars model also implements the agent’s actions on the model using the following methods:

• travel() - This method utilises an A* search algorithm to provide a collision free path

from the agent’s current position to the target location. It then calls the move() method to

iteratively move the agent along the path.

• collectSample() - This method checks that the agent is not already carrying a sample

and that there is an object of the correct type in a neighboring cell. It then removes the

object from the grid and adds the agent’s name to the relevant carrying item list (e.g.

agentsWithWater).

• depositSample() - This method checks that the agent is carrying a sample and that there

is an empty cell that the agent can deposit it into. It then updates the grid accordingly.

The grid world view has two nested classes representing the grid and the cells on the grid.

It also extends the cell class to define agent cells, obstacle cells and empty cells. The mars view

extends the agent class to create new cell classes for each type of agent. It also defines new cell

classes for each type of item (water/ice, fossil and living organisms). These define how the cells

are visualised and an animation timer is used to update the view based on the model.

Figure 4.7 shows the 15x15 grid world used to model the environment. The red boxes indicate

the nine locations that agents hold beliefs regarding the presence of each item. Each location is

a 5x5 grid. Agents are capable of perceiving items that are contained in the same location that

they are located in.

The mars environment class overrides the environments executeAction() method and provides

methods for creating the agent’s percepts and notifying the agents.

• executeAction() - This methods parses the string corresponding to the environment

action and calls the models relevant action. If the action is successful then it calls the

updateAgentPercepts for that particular agent.

• updateAgentPercepts() - This method updates the agentPercepts variable defined in the

base environment class. The environment class automatically handles notifying the agents

when they have new perceptions so this method purely updates the agentPercepts variable

based on the mars model.

– It checks the location of the agent and searches through the 5x5 section of the grid

corresponding to that location for the presence of each item. If there is no item

present then it increases the weight associated with the literal representing not

having an item by a random amount. For example, if the agent was at location(1)
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Figure 4.7: Mars world view showing the nine locations marked with red boxes. The dark blue
box marked A represents a sample A agent, the brown cell marked B represents a sample B
agent, the green cell marked analysis represents an analysis agent, the light blue boxes marked
water represent water samples, the grey boxes marked fossil represents fossil samples and the
red box marked life represents a living organism sample.

and there is no water or ice at location(1) then agent would update it’s GUB with

∗(¬water_or_ice(location(1)), w), where w is a random amount between the previous

weight associated with the literal and the maximum weight, 1. If there is an item

present then it increases the weight associated with the literal represnting that there

is an item present (e.g. water_or_ice(location(1)))

– If the agent’s name is on a carrying items list then the perception ∗(carrying(A),1)

is added to the agentPercepts variable. This represents that the agent is certain that

it is carrying what it believes to be a sample containing the presence of A.

– If the agent moves to a new location then the weight (probability) associated with it’s

belief in the old location is reduced and the weight associated with the new location is

increased.
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4.3.3 Agents

In order to solve this problem the agent’s were implemented using the extended AgentSpeak(L)

language. The agent’s belief bases are represented as GUBs with five epistemic states, W1, W2

and W3, representing the agent’s beliefs in finding water/ice, fossils or living organisms at a

given location respectively, W4 representing the agent’s belief in it’s current location and W5

representing the agent’s belief in whether or not it is carrying a particular item. W1, W2 and

W3 are instantiated as possibilistic compact epistemic states and W4 and W5 are instantiated as

probabilistic compact epistemic states as shown below,

1 ***( water_or_ice ( l ocat ion (X) ) , w) .
2 ***( f o s s i l ( l o cat ion (X) ) , w) .
3 ***( living_organism ( locat ion (X) ) , w) .
4 **( at ( l ocat ion (X) ) , p ) .
5 **( carrying (X) , p ) .

where w is the weight associated with the belief literal l, such that N(l)≥ w and p is the weight

associated with the belief literal l, such that P(l) = p. For any epistemic state instantiation W

over domain At, the initial weights for b ∈ At are defined as follows,

W(b)=
{

(1,1), if W is possibilistic,

(0.5,0.5), if W is probabilistic,

where W(b)= (
+
µ,

−
µ) represents that

+
µ is the λ-value for b and

−
µ is the λ-value of it’s negation

¬b. The definition of the sample agent A is detailed below along with details of it’s interpretation

cycle. The other agents operate in a similar manner.

4.3.3.1 Sample Agent A

The sample agent A program is listed in Figure 4.8 and lines 1-38 show the agent’s initial beliefs

being specified. Line 41 shows the definition of the agents initial goal !exploreMars. This is used

by the agent to trigger relevant plans. The agent’s plans are specified on lines 43-58.

The agents GUB and revised weights are shown in Table 4.1, where Wi represents the

compact epistemic state i, b ∈ Ati represents the domain of epistemic state i and Wi(b) the

weights associated with the positive and negative literals Wi(b)= (
+
µ,

−
µ). The weights associated

with the belief literals in the epistemic state representing the agent’s belief in it’s current

location are all set to zero. This is because when the agent is randomly initialised it perceives it’s

environment and updates it’s GUB accordingly.

Tables 4.2 and 4.3 provide a summary of the agent’s reasoning cycle for the first six steps

of operation. The events generated due to the agents location have been omitted for clarity.

Informally, the agent receives the goal !exploreMars as a new event when it is instantiated,

which in turn triggers the agent’s first plan p1. In this scenario there are nine locations that
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1 # I n i t i a l b e l i e f s .
2 ***( water_or_ice ( l ocat ion ( 1 ) ) , 0 . 9 ) .
3 ***( water_or_ice ( l ocat ion ( 2 ) ) ,0 .85 ) .
4 ***(~ water_or_ice ( l ocat ion ( 3 ) ) , 0 . 5 ) .
5 ***( water_or_ice ( l ocat ion ( 4 ) ) ,0 .35 ) .
6 ***( water_or_ice ( l ocat ion ( 5 ) ) , 0 . 5 ) .
7 ***( water_or_ice ( l ocat ion ( 6 ) ) , 0 . 4 ) .
8 ***( water_or_ice ( l ocat ion ( 7 ) ) , 0 . 3 ) .
9 ***(~ water_or_ice ( l ocat ion ( 8 ) ) , 0 . 2 ) .

10 ***(~ water_or_ice ( l ocat ion ( 9 ) ) , 0 . 1 ) .
11 ***(~ f o s s i l ( l o cat ion ( 1 ) ) , 0 . 9 ) .
12 ***(~ f o s s i l ( l o cat ion ( 2 ) ) ,0 .85 ) .
13 ***(~ f o s s i l ( l o cat ion ( 3 ) ) , 0 . 5 ) .
14 ***( f o s s i l ( l o cat ion ( 4 ) ) ,0 .35 ) .
15 ***( f o s s i l ( l o cat ion ( 5 ) ) , 0 . 8 ) .
16 ***( f o s s i l ( l o cat ion ( 6 ) ) , 0 . 4 ) .
17 ***( f o s s i l ( l o cat ion ( 7 ) ) , 0 . 9 ) .
18 ***(~ f o s s i l ( l o cat ion ( 8 ) ) , 0 . 2 ) .
19 ***(~ f o s s i l ( l o cat ion ( 9 ) ) , 0 . 7 ) .
20 ***(~ living_organism ( locat ion ( 1 ) ) , 0 . 9 ) .
21 ***(~ living_organism ( locat ion ( 2 ) ) ,0 .85 ) .
22 ***( living_organism ( locat ion ( 3 ) ) , 0 . 6 ) .
23 ***( living_organism ( locat ion ( 4 ) ) ,0 .35 ) .
24 ***( living_organism ( locat ion ( 5 ) ) , 0 . 3 ) .
25 ***( living_organism ( locat ion ( 6 ) ) , 0 . 4 ) .
26 ***(~ living_organism ( locat ion ( 7 ) ) , 0 . 9 ) .
27 ***(~ living_organism ( locat ion ( 8 ) ) , 0 . 4 ) .
28 ***(~ living_organism ( locat ion ( 9 ) ) , 0 . 6 ) .
29 **( at ( l ocat ion ( 1 ) ) ,0 ) .
30 **( at ( l ocat ion ( 2 ) ) ,0 ) .
31 **( at ( l ocat ion ( 3 ) ) ,0 ) .
32 **( at ( l ocat ion ( 4 ) ) ,0 ) .
33 **( at ( l ocat ion ( 5 ) ) ,0 ) .
34 **( at ( l ocat ion ( 6 ) ) ,0 ) .
35 **( at ( l ocat ion ( 7 ) ) ,0 ) .
36 **( at ( l ocat ion ( 8 ) ) ,0 ) .
37 **( at ( l ocat ion ( 9 ) ) ,0 ) .
38 **( carrying ( water ) ,0 ) .
39
40 # I n i t i a l goals .
41 ! exploreMars .
42
43 # Plan l ibrary .
44 +! exploreMars : water_or_ice ( l ocat ion (X) ) > water_or_ice ( l ocat ion (Y) ) &&
45 water_or_ice ( l ocat ion (X) ) > water_or_ice ( l ocat ion (Y1) ) &&
46 X \== Y && X \== Y1 && Y \== Y1 <− ! findWater ( l ocat ion (X) ) .
47
48 +! findWater ( l ocat ion (X) ) : water_or_ice ( l ocat ion (Z ) ) > water_or_ice ( l ocat ion (X) ) &&
49 Z \== X <− ! findWater ( l ocat ion (Z ) ) .
50
51 +! findWater ( l ocat ion (X) ) : water_or_ice ( l ocat ion (Z ) ) && Z \== X <− travel ( l o cat ion (X) ) .
52
53 *( water_or_ice ( l ocat ion (X) ) , W) : water_or_ice ( l ocat ion (X) ) > water_or_ice ( l ocat ion (X1) ) &&
54 at ( l ocat ion (X) ) <− collectSample ( water ) .
55
56 *( water_or_ice ( l ocat ion (X) ) , W) : ~water_or_ice ( l ocat ion (X) <− ! exploreMars .
57
58 *( carrying (A) , W) : carrying (A) <− travel ( l o cat ion (8 ,7 ) ) ; depositSample (A) ; ! exploreMars .

Figure 4.8: Sample Agent A program listing for Mars exploration scenario

the agent holds beliefs about the presence of water/ice. Figure 4.9 shows the plan that an agent

would require in order to determine the most plausible location for finding water/ice.
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Table 4.1: Initial GUB definition and revised weights

Wi Instantiation b ∈ Ati Wi(b)

W1 Possibility

water_or_ice(location(1)) (1, 0.9)
water_or_ice(location(2)) (1, 0.85)
water_or_ice(location(3)) (0.5, 1)
water_or_ice(location(4)) (1, 0.35)
water_or_ice(location(5)) (1, 0.5)
water_or_ice(location(6)) (1, 0.4)
water_or_ice(location(7)) (1, 0.3)
water_or_ice(location(8)) (0.8, 1)
water_or_ice(location(9)) (0.9, 1)

W2 Possibility

f ossil(location(1)) (0.1, 1)
f ossil(location(2)) (0.15, 1)
f ossil(location(3)) (0.5, 1)
f ossil(location(4)) (1, 0.35)
f ossil(location(5)) (1, 0.8)
f ossil(location(6)) (1, 0.4)
f ossil(location(7)) (1, 0.9)
f ossil(location(8)) (0.8, 1)
f ossil(location(9)) (0.3, 1)

W3 Possibility

l iving_organism(location(1)) (0.1, 1)
l iving_organism(location(2)) (0.15, 1)
l iving_organism(location(3)) (1, 0.6)
l iving_organism(location(4)) (1, 0.35)
l iving_organism(location(5)) (1, 0.3)
l iving_organism(location(6)) (1, 0.4)
l iving_organism(location(7)) (0.1, 1)
l iving_organism(location(8)) (0.6, 1)
l iving_organism(location(9)) (0.4, 1)

W4 Probability

at(location(1)) (0, 1)
at(location(2)) (0, 1)
at(location(3)) (0, 1)
at(location(4)) (0, 1)
at(location(5)) (0, 1)
at(location(6)) (0, 1)
at(location(7)) (0, 1)
at(location(8)) (0, 1)
at(location(9)) (0, 1)

W5 Probability carrying(water) (0, 1)
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Table 4.2: Sample Agent A’s reasoning cycle - planning stage

Step Event Set Relevant Plans Applicable Plans Adopt Intention
1 {��e1} {〈p1,;〉} {〈p1, {X /7,Y /9,Y 1/8}〉} i1 = [〈p1, {X /7,Y /9,Y 1/8}〉]
2 {��e2} {〈p2, {X /7}〉,〈p3, {X /7}〉} {〈p2, {X /7, Z/2}〉,〈p3, {X /7, Z/9}〉} i2 = [〈p2, {X /7, Z/2}〉,〈p1, {X /7,Y /9,Y 1/8}〉]

{��e3} {〈p2, {X /2}〉,〈p3, {X /2}〉} {〈p2, {X /2, Z/1}〉,〈p3, {X /2, Z/4}〉} i3 = [〈p2, {X /2, Z/1}〉,〈p2, {X /7, Z/2}〉,〈p1, {X /7,Y /9,Y 1/8}〉]
3 {��e4} {〈p2, {X /1}〉,〈p3, {X /1}〉} {〈p3, {X /1, Z/4}〉} i4 = [〈p3, {X /1, Z/4}〉,〈p2, {X /2, Z/1}〉,〈p2, {X /7, Z/2}〉,〈p1, {X /7,Y /9,Y 1/8}〉]
4 ; - - -
5 {��e5} {〈p4, {X /1,W /0.9}〉} {〈p4, {X /1,W /0.9}〉} i5 = [〈p4, {X /1,W /0.9}〉]
6 {��e6} {〈p5, {}〉} {〈p5, {}〉} i6 = {〈p5, {}〉}

Table 4.3: Sample Agent A’s reasoning cycle - acting stage

Step Intention Set Execute Step Generate Event Intention Set
1 {��i1} ! f indWater(location(7)) e2 = 〈+! f indWater(location(7)), i1〉 ;
2 {��i2} ! f indWater(location(2)) e3 = 〈+! f indWater(location(2)), i2〉 ;
3 {��i3} ! f indWater(location(1)) e4 = 〈+! f indWater(location(1)), i3〉 ;
4 {��i4} travel(location(1)) e5 = 〈∗(water_or_ice(location(1)),0.98), []〉 {i4}
5 {��i5} collectSample(water) e6 = 〈∗(carrying(water),1), []〉 {i5}
6 {��i6} travel(location(5)) - {i6}

1 +! exploreMars :
2 water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (Y) ) && water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (

Y1) ) &&
3 water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (Y2) ) && water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (

Y3) ) &&
4 water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (Y4) ) && water_or_ice ( l ocat ion (X) ) >= water_or_ice (

l ocat ion (Y5) ) &&
5 water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (Y6) ) && water_or_ice ( l ocat ion (X) ) >= water_or_ice (

l ocat ion (Y7) ) &&
6 water_or_ice ( l ocat ion (X) ) >= water_or_ice ( l ocat ion (Y8) ) &&
7 X \== Y && X \== Y1 && X \== Y2 && X \== Y3 && X \== Y4 && X \== Y5 && X \== Y6 && X \== Y7 && X \== Y8 &&
8 Y \== Y1 && Y \== Y2 && Y \== Y3 && Y \== Y4 && Y \== Y5 && Y \== Y6 && Y \== Y7 && Y \== Y8 &&
9 Y1 \== Y2 && Y1 \== Y3 && Y1 \== Y4 && Y1 \== Y5 && Y1 \== Y6 && Y1 \== Y7 && Y1 \== Y8

10 Y2 \== Y3 && Y2 \== Y4 && Y2 \== Y5 && Y2 \== Y6 && Y2 \== Y7 && Y2 \== Y8 &&
11 Y3 \== Y4 && Y3 \== Y5 && Y3 \== Y6 && Y3 \== Y7 && Y3 \== Y8 &&
12 Y4 \== Y5 && Y4 \== Y6 && Y4 \== Y7 && Y4 \== Y8 &&
13 Y5 \== Y6 && Y5 \== Y7 && Y5 \== Y8 &&
14 Y6 \== Y7 && Y6 \== Y8 &&
15 Y7 \== Y8 <− travel ( l o cat ion (X) ) .

Figure 4.9: Non-recursive plan for determining most plausible location containing water or ice

This plan contains nine free variables and the relevant epistemic state contains nine belief

atoms that each free variable could unify with. The getUnfiers() method in the GUB class suffers

from complexity issues because it is required to return every possible unifier for the plan context.

As a result the getUnifiers() method would return 387,420,489 possible unifiers. Future work

should look to improve the efficiency of this method. However, this issue was dealt with by

defining recursive plans for the agent. Plan p2 and plan p3 both contain the same triggering

event so are both relevant plans when the achievement goal ! f indWater(location(X )) is added

(and selected) from the event set. Plan p2 recursively calls itself until it’s context can no longer

evaluate to true i.e. the agent could not find any locations that it believes contains water/ice more

than the current instantiation of X (acting as an accumulator). Plan p3 then becomes the only

applicable plan and the environment action travel(location(1)) is executed on the environment.

At this point the agent waits for a new event to act upon. As the agent has now moved to a new
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location it receives new perceptions from the environment regarding the presence of water/ice in

location 1 and it’s new location. The agent’s new perceptions create three revise belief actions

∗(water_or_ice(location(1)),0.98), ∗(at(location(1)),0.98) and ∗(at(location(5)),0.25). These

actions update the agent’s GUB and create new external events that are added to the event

set that the agent is managing. The event associated with ∗(water_or_ice(location(1)),0.98)

is then selected from the event set and unifies with plans p4 and p5, making them rele-

vant plans. As the λ-value associated with water_or_ice(location(1)) is higher than the λ-

value for ¬water_or_ice(location(1)) and similarly for it’s belief about it’s location, only plan

p4 is applicable and the agent performs the environment action collectSample(water). The

collectSample(water) action informs the agent’s controller, which automatically moves the

agent to the cell containing water/ice and collects it. If the plan context does not evaluate to

true then plan p5 will be an applicable plan. This plan will create a new achievement goal

!exploreMars, which will restart the reasoning cycle by triggering plan p1. The events associ-

ated with the agent’s current location will then be selected and removed from the event set. These

do not result in any relevant plans and as there are no un-executed actions in the intention set

the agent once again waits for a new event.

At this point the agent has picked up the item and receives a new perception from the

environment which creates a new revise belief action ∗(carrying(water),1). The resulting

external event unifies with plan p6, making it a relevant plan. As the agent believes that it

is carrying water the plan is applicable and it executes the travel(location(8,7)) environment

action, which moves it to the analysis agent’s location. The agent receives new perceptions

regarding it’s location but once again the corresponding events do not trigger any plans. The

agent then executes the depositSample(water) environment action which deposits the sample

next to the analysis agent. The agent once again receives new perceptions that it is no longer

carrying the sample and revises it’s GUB accordingly. The corresponding event triggers plan p6,

however, as the agent does not believe that it is still carrying the sample the plan is not applicable.

The agent then generates a new achievement goal !exploreMars and the process continues. As

the environment has been modified along with the agent’s GUB, the agent continues to collect

samples, checking more plausible locations first and stopping once it believes that all of the

locations no longer contain samples.

4.3.4 MAS Definition and Runtime

Figure 4.10 shows the (.mas) configuration file that was used to define the mars exploration

MAS. The system uses a centralised infrastructure and specifies an environment class called

MarsEnvironment that has two constructor parameters: the environment configuration ID that

specifies the model to be used from the MarsWorldFactory class and the size of the window

containing the environment’s view. The MarsWorldFactory class was used to create mars worlds

with different layouts and number of items.

74



4.3. MARS EXPLORATION SCENARIO

1 MAS marsExplorationScenario {
2
3 in frastructure : centra l i sed
4
5 environment : env . MarsEnvironment (2 , 800)
6 / / 1 . environment conf igurat ion id ( int )
7 / / 2 . Window width ( int )
8
9 agents :

10 sampleAgentA ;
11
12 sampleAgentB ;
13
14 analysisAgent ;
15 }

Figure 4.10: Mars exploration MAS configuration file (.mas)

Figure 4.11 shows the IDE that was created for Uncertain AgentSpeak(L) with the mars

exploration MAS loaded into it. Figure 4.12 shows a screen shot of the full mars exploration MAS

running, including the IDE, agent console and mars environment view.

Figure 4.11: Screen shot of the mars exploration MAS loaded into the Uncertain AgentSpeak(L)
IDE
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Figure 4.12: Screen shot of the IDE, agent console and environment view for the mars exploration
MAS
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DISCUSSION

In the previous two chapters the implementation of the extended AgentSpeak(L) program-

ming language was detailed, along with the development environment that was created

for defining and simulating MASs written in the extended language. The mars exploration

MAS presented in Section 4.3 provides a means of analysing the performance of both the extended

language and the development environment.

This project had four main objectives: to implement the AgentSpeak(L) agent programming

language, extend this implementation for modelling and reasoning with uncertain information, to

develop a platform where MASs written in the extended language could be defined and simulated,

and to analyse the performance of the extended language utilising the platform. The first objective

was intended to provide a base for implementing the extended language as well as providing a

bench mark to asses it’s performance.

The epistemic state class that was implemented provides the base functionality for instan-

tiating epistemic states with different underlying uncertainty theories. This is in coherence

with Definition-2.4.1. The class provides the basic functionality of paring down a logical for-

mula φ ∈L≥ to be a propositional statement φ ∈L . Bauters et al. (2017) presented a compact

epistemic state (an extension of the general epistemic state discussed previously) providing a

tractable approach to modelling and revising uncertain beliefs. The compact epistemic state class

implements efficient mechanisms for revision and determining the λ-value of a formula. The

probabilistic and possibilistic compact epistemic state instantiations achieve probability and

possibility distributions over the belief literals contained within the epistemic states, as desired.

Dempster-Shafer theory is a powerful uncertainty theory that is limited in it’s applicability due

to it’s computational complexity. Future work could investigate how the epistemic state class

could be instantiated with Dempster-Shafer theory and how efficient revision and entailment
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operators could be defined and implemented.

A GUB was used to group an agents epistemic states and act as it’s belief base. Although

the underlying mechanisms for evaluating whether a logical expression is entailed by the GUB

are efficient, the need to obtain all of the possible unifiers between the logical expression and

the GUB results in complexity issues when evaluating formulas with many free variables. In

the example scenario, the agents plan libraries consisted of recursive plans to obtain the most

plausible location containing an item. This was due to the computational complexity of the

getUnifiers() method that scales exponentially with the number of free variables in the plan

context. Future work could define syntax for obtaining the most plausible belief literal from

an epistemic state using recursion (outside of the agent’s interpreter). This would prevent the

agent’s interpreter from performing execution steps to find the most plausible location and would

instead perform the recursive operation "behind the scenes".

In the mars exploration MAS the agent’s were capable of reasoning about uncertain beliefs

regarding the presence of items in different locations. A MAS consisting of standard AgentS-

peak(L) agents would have to model each location as either containing or not containing an item.

This binary representation of beliefs does not permit agents to prioritise locations based on the

strengths of their beliefs (instantiated with uncertainty theories). Instead, they would be required

to deploy random search which would result in significantly lower performance. Although the

GUB is a powerful tool for implementing beliefs instantiated with uncertainty theories, it is also

quite restrictive. It would be beneficial for an agent to maintain both a GUB and a standard

AgentSpeak(L) belief base. There are certain beliefs that are better modelled as standard belief

atoms. Representing an agents location in the example scenario consisted of defining a belief

literal for each location (at(location(1)), ..., at(location(9))). This required the agent having

prior knowledge of it’s environment and also leads to complexity issues when determining the

most plausible belief when the epistemic state’s domain is large. In situations like this it would

be more beneficial to simply add and delete beliefs, as in AgentSpeak(L).

Although the mars exploration MAS was simple it proves that agents are capable of mod-

elling their beliefs as epistemic states instantiated with probability and possibility theory. The

mechanisms for belief revision and entailment were tested in the scenario and were capable of

providing reactive behaviour. The language for constructing plan contexts and test goals is much

more expressive than in AgentSpeak(L), where they simply consist of a conjunction of literals.

This work only implemented a centralised infrastructure for running MASs. This executes all

of the agents and the environment on the same machine using separate threads. This has limited

performance arising from the capabilities of the JVM and the underlying operating system.

Implementing a distributed architecture such as SACI or JADE would enable large MASs to be

defined and simulated. Currently the centralised architecture is limited to running no more than

5 agents (on a 2.3GHz Intel Core i7 MacBook Pro). It would be interesting to see how well both

the extended AgentSpeak(L) implementation and the simulation environment scale with large
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systems.

The environment is capable of hosting multiple agents that can both perceive from and act on

the environment. This is made possible by synchronized methods that ensure no concurrency

issues arise. There is a field of researching looking into non-blocking algorithms for concurrent

environments that utilise low-level machine instructions to ensure data integrity. Java has

implementations of atomic variables which work along these lines preventing locking issues

arising from synchronised methods. Future work should consider integrating atomic variables

into the simulation environment.
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CONCLUSION

The overall aim of this project was to implement an extension of the AgentSpeak(L) agent pro-

gramming language for modelling and reasoning with uncertain information. The implemented

extended AgentSpeak(L) language effectively allows agents to model and reason with uncertainty

in a computationally efficient manner. Agents are capable of modelling their beliefs as either

probabilistic or possibilistic epistemic states and the implementation of epistemic states provides

a base for easily implementing instantiations of different uncertainty theories, e.g. Demspter-

Shafer theory. The language for constructing plan contexts and test goals was extended and

implemented as the logical expression class. This included the ability to use qualitative operators

such as >, not and ≥. Using a GUB to group together an agent’s uncertain beliefs (represented as

epistemic states) and the logical expression class, agents are capable of reasoning over uncertain

beliefs in the context of plans and in the bodies of plans using test goals. This enables agents to

select applicable plans from the set of relevant plans by querying if a logical formula is entailed

by the GUB.

The development environment enables a user to easily create a simulation environment

that is capable of hosting multiple agents that are modelling and reasoning with uncertain

information. It uses a multi-threaded approach to enable multiple agents to run on a single

machine and ensures that agents act on and perceive an environment without any thread

interference or memory inconsistency issues. Base classes were created for implementing a

grid world environment, including a grid world model and a grid world view for visualising the

environment. All of the work in this project was then brought together in a mars exploration

MAS that demonstrated the extended modelling and reasoning capabilities as well as the power

of the development environment as a whole.

Humans are a great example of autonomous agents as we successfully achieve our desires in a
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world pervaded with uncertainty. The field of artificial intelligence faces a significant challenge to

develop intelligent agents that are capable of reasoning as human beings do. The BDI architecture

and as a result AgentSpeak(L), has gained great interest for achieving such intelligent agents. The

work presented here has extended the capabilities of AgentSpeak(L) agents to model uncertain

information using epistemic states and to reason about these uncertain beliefs in a tractable

manner. Further to this, it has provided a development environment for defining and simulating

multiple extended AgentSpeak(L) agents on a single machine.
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BELIEF BASE JAVA CLASSES

This appendix details the Java classes that were used to implement the belief base, includ-

ing the global uncertain belief class, epistemic state class, compact epistemic state class,

probabilistic compact epistemic state and possibilistic compact epistemic state class.

A.1 GlobalUncertainBelief Class

1 package main.java.uncertain_agentspeak.uncertainty;
2

3 public class GlobalUncertainBelief {
4

5 private final Logger LOGGER = LogManager.getLogger("Global Uncertain Belief");
6

7 private HashSet <BeliefAtom > domain;
8 private HashMap <HashSet <BeliefAtom >, CompactEpistemicState > epistemicStates;
9

10 public GlobalUncertainBelief () {
11 domain = new HashSet <>();
12 epistemicStates = new HashMap <>();
13 }
14

15 public void addEpistemicState(CompactEpistemicState epistemicState) throws
Exception {

16 if(!this.domain.isEmpty () && !epistemicState.getDomain ().isEmpty ()) {
17 for (BeliefAtom t : epistemicState.getDomain ()) {
18 if (domain.contains(t)) {
19 throw new Exception("Intersects with existing epistemic state");
20 }
21 }
22 }
23 this.domain.addAll(epistemicState.getDomain ());
24 epistemicStates.put(epistemicState.getDomain (), epistemicState);
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25 }
26

27 public HashMap <HashSet <BeliefAtom >, CompactEpistemicState > getGUB () {
28 return epistemicStates;
29 }
30

31 private HashSet <CompactEpistemicState > getRelevantEpistemicStates(LogicalExpression
logicalExpression) {

32 HashSet <CompactEpistemicState > relevantEpistemicStates = new HashSet <>();
33 for (Map.Entry <HashSet <BeliefAtom >, CompactEpistemicState > epistemicState :

epistemicStates.entrySet ()) {
34 CompactEpistemicState compactEpistemicState = epistemicState.getValue ();
35 if (compactEpistemicState.languageContains(logicalExpression)) {
36 relevantEpistemicStates.add(compactEpistemicState);
37 }
38 }
39 return relevantEpistemicStates;
40 }
41

42 public void revise(BeliefLiteral beliefLiteral , double weight) throws Exception {
43 if (! beliefLiteral.isGround ()) {
44 throw new NotGroundException(beliefLiteral + "is not ground");
45 }
46 for (Map.Entry <HashSet <BeliefAtom >, CompactEpistemicState > epistemicStateEntry

: epistemicStates.entrySet ()) {
47 BeliefAtom beliefAtom = beliefLiteral.getBeliefAtom ();
48 HashSet <BeliefAtom > domain = epistemicStateEntry.getKey ();
49 if ( domain.contains(beliefAtom) ) {
50 CompactEpistemicState epistemicState = epistemicStateEntry.getValue ();
51 epistemicState.revise(beliefLiteral , weight);
52 epistemicStates.put(domain , epistemicState);
53 return;
54 }
55 }
56 LOGGER.error("No local epistemic state for: " + beliefLiteral);
57 throw new Exception("No local epistemic state for: " + beliefLiteral);
58 }
59

60 private boolean languageContains(LogicalExpression logicalExpression) {
61 for (Map.Entry <HashSet <BeliefAtom >, CompactEpistemicState > epistemicState :

epistemicStates.entrySet ()) {
62 CompactEpistemicState compactEpistemicState = epistemicState.getValue ();
63 if (compactEpistemicState.languageContains(logicalExpression)) {
64 return true;
65 }
66 }
67 return false;
68 }
69

70 private HashSet <Unifier > getUnifiers(LogicalExpression logicalExpression , Unifier
unifier) throws Exception {

71

72 HashSet <BeliefAtom > beliefAtoms = logicalExpression.substitute(unifier).
getBeliefAtoms ();

73 ArrayList <Variable > freeVariables = new ArrayList <>();
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74

75 // Get the free variables in the logical expression
76 for ( BeliefAtom beliefAtom : beliefAtoms) {
77 if (! beliefAtom.isGround ()) {
78 freeVariables.addAll(beliefAtom.getTerm ().getVariables ());
79 }
80 }
81

82 // Get the set of Term’s each free variable could be instantiated with
83 HashMap <Variable , HashSet <Term >> varTermMap = new HashMap <>();
84 for (Variable variable : freeVariables) {
85 for (CompactEpistemicState compactEpistemicState :

getRelevantEpistemicStates(logicalExpression.substitute(unifier))) {
86 for (BeliefAtom beliefAtom : beliefAtoms) {
87 if (beliefAtom.getTerm ().getVariables () != null) {
88 if (beliefAtom.getTerm ().getVariables ().contains(variable)) {
89 varTermMap.put(variable , compactEpistemicState.getUnifiers(

beliefAtom , variable));
90 }
91 }
92 }
93 }
94 }
95

96 // recursive method to create a Unifier for every combination of variable
substitution

97 return combine(0, unifier , varTermMap , new HashSet <>());
98 }
99

100 public HashSet <Unifier > combine(int index , Unifier current , Map <Variable ,HashSet <
Term >> map , HashSet <Unifier > list) {

101 if(index == map.size()) {
102 Unifier newUnifier = new Unifier ();
103 for(Variable key: current.keySet ()) {
104 newUnifier.put(key , current.get(key));
105 }
106 list.add(newUnifier);
107 } else {
108 Object currentKey = map.keySet ().toArray ()[index];
109 for(Term value: map.get(currentKey)) {
110 current.put(( Variable)currentKey , value);
111 combine(index + 1, current , map , list);
112 current.remove(currentKey);
113 }
114 }
115 return list;
116 }
117

118 public Unifier entails(LogicalExpression logicalExpression) throws Exception {
119 return entails(logicalExpression , new Unifier ());
120 }
121

122 public Unifier entails(LogicalExpression logicalExpression , Unifier unifier) throws
Exception {

123 HashSet <Unifier > unifiers = this.getUnifiers(logicalExpression , unifier);
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124

125 for (Unifier u : unifiers) {
126 Unifier unifierValid = null;
127 if (logicalExpression instanceof Conjunction) {
128 unifierValid = entails (( Conjunction) logicalExpression , u);
129 } else if (logicalExpression instanceof Disjunction) {
130 unifierValid = entails (( Disjunction) logicalExpression , u);
131 } else if (logicalExpression instanceof GreaterEqualsPlausibility) {
132 unifierValid = entails (( GreaterEqualsPlausibility) logicalExpression , u

);
133 } else if (logicalExpression instanceof GreaterThanPlausibility) {
134 unifierValid = entails (( GreaterThanPlausibility) logicalExpression , u);
135 } else if (logicalExpression instanceof Negation) {
136 unifierValid = entails (( Negation) logicalExpression , u);
137 } else if (logicalExpression instanceof BeliefAtom) {
138 unifierValid = entails (( BeliefAtom) logicalExpression , u);
139 } else if (logicalExpression instanceof BeliefLiteral) {
140 unifierValid = entails (( BeliefLiteral) logicalExpression , u);
141 } else if (logicalExpression instanceof RelationalExpression) {
142 unifierValid = entails (( RelationalExpression) logicalExpression , u);
143 } else if (logicalExpression instanceof Contradiction) {
144 unifierValid = entails (( Contradiction) logicalExpression , u);
145 } else if (logicalExpression instanceof Tautology) {
146 unifierValid = entails (( Tautology) logicalExpression , u);
147 }
148 if (unifierValid != null) {
149 return unifierValid;
150 }
151 }
152 return null;
153 }
154

155 private Unifier entails(Contradiction contradiction , Unifier unifier) {
156 return null;
157 }
158

159 private Unifier entails(Tautology tautology , Unifier unifier) {
160 return unifier;
161 }
162

163 private Unifier entails(BeliefAtom beliefAtom , Unifier unifier) throws Exception {
164 BeliefAtom groundBeliefAtom = beliefAtom.substitute(unifier);
165 if (this.languageContains(groundBeliefAtom)) {
166 HashSet <CompactEpistemicState > relevantEpistemicStates =

getRelevantEpistemicStates(groundBeliefAtom);
167 for (CompactEpistemicState compactEpistemicState : relevantEpistemicStates)

{
168 // System.out.println(compactEpistemicState.toString ());
169 Unifier unifierValid = compactEpistemicState.entails(beliefAtom ,

unifier);
170 if (unifierValid != null) {
171 return unifierValid;
172 }
173 }
174 }
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175 return null;
176 }
177

178 private Unifier entails(BeliefLiteral beliefLiteral , Unifier unifier) throws
Exception {

179 BeliefLiteral groundBeliefLiteral = beliefLiteral.substitute(unifier);
180 if (this.languageContains(groundBeliefLiteral)) {
181 HashSet <CompactEpistemicState > relevantEpistemicStates =

getRelevantEpistemicStates(groundBeliefLiteral);
182 for (CompactEpistemicState compactEpistemicState : relevantEpistemicStates)

{
183 Unifier unifierValid = compactEpistemicState.entails(beliefLiteral ,

unifier);
184 if (unifierValid != null) {
185 return unifierValid;
186 }
187 }
188 }
189 return null;
190 }
191

192 private Unifier entails(Conjunction conjunction , Unifier unifier) throws Exception
{

193 Conjunction groundConjunction = conjunction.substitute(unifier);
194 if (this.languageContains(groundConjunction)) {
195 HashSet <CompactEpistemicState > relevantEpistemicStates =

getRelevantEpistemicStates(groundConjunction);
196 for (CompactEpistemicState compactEpistemicState : relevantEpistemicStates)

{
197 Unifier unifierValid = compactEpistemicState.entails(conjunction ,

unifier);
198 if (unifierValid != null) {
199 return unifierValid;
200 }
201 }
202 return null;
203 } else {
204 Unifier unifierLeft = this.entails(conjunction.getLeft (), unifier);
205 Unifier unifierRight = null;
206 if (unifierLeft != null) {
207 unifierRight = this.entails(conjunction.getRight (), unifierLeft);
208 }
209 return unifierRight;
210 }
211 }
212

213 private Unifier entails(Disjunction disjunction , Unifier unifier) throws Exception
{

214 Disjunction groundDisjunction = disjunction.substitute(unifier);
215 if (this.languageContains(groundDisjunction)) {
216 HashSet <CompactEpistemicState > relevantEpistemicStates =

getRelevantEpistemicStates(groundDisjunction);
217 for (CompactEpistemicState compactEpistemicState : relevantEpistemicStates)

{
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218 Unifier unifierValid = compactEpistemicState.entails(disjunction ,
unifier);

219 if (unifierValid != null) {
220 return unifierValid;
221 }
222 }
223 return null;
224 } else {
225 if ( this.entails(disjunction.getLeft (), unifier) != null || this.entails(

disjunction.getRight (), unifier) != null && groundDisjunction.isGround ()) {
226 return unifier;
227 }
228 return null;
229 }
230 }
231

232 private Unifier entails(GreaterEqualsPlausibility greaterEqualsPlausibility ,
Unifier unifier) throws Exception {

233 GreaterEqualsPlausibility groundGreaterEqualsPlausibility =
greaterEqualsPlausibility.substitute(unifier);

234 if (this.languageContains(groundGreaterEqualsPlausibility)) {
235 HashSet <CompactEpistemicState > relevantEpistemicStates =

getRelevantEpistemicStates(groundGreaterEqualsPlausibility);
236 for (CompactEpistemicState compactEpistemicState : relevantEpistemicStates)

{
237 Unifier unifierValid = compactEpistemicState.entails(

greaterEqualsPlausibility , unifier);
238 if (unifierValid != null) {
239 return unifierValid;
240 }
241 }
242 return null;
243 } else {
244 if (groundGreaterEqualsPlausibility.isGround () ) {
245 if (languageContains(groundGreaterEqualsPlausibility.getLeft ()) &&

languageContains(groundGreaterEqualsPlausibility.getRight ())) {
246 double lambdaLeft = 0;
247 double lambdaRight = 0;
248 CompactEpistemicState classLeft = null;
249 CompactEpistemicState classRight = null;
250

251 StrongNegation negatedLeft = new StrongNegation(
groundGreaterEqualsPlausibility.getLeft ());

252 StrongNegation negatedRight = new StrongNegation(
groundGreaterEqualsPlausibility.getRight ());

253

254 for (CompactEpistemicState compactEpistemicState :
getRelevantEpistemicStates(negatedLeft)) {

255 classLeft = compactEpistemicState;
256 lambdaLeft = compactEpistemicState.getLambda(negatedLeft);
257 }
258

259 for (CompactEpistemicState compactEpistemicState :
getRelevantEpistemicStates(negatedRight)) {

260 classRight = compactEpistemicState;
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261 lambdaRight = compactEpistemicState.getLambda(negatedRight);
262 }
263 if (classLeft instanceof CompactProbabilisticEpistemicState && !(

classRight instanceof CompactProbabilisticEpistemicState)) {
264 LOGGER.error("The operands of a qualitative operator must be of

the same type");
265 } else if (classLeft instanceof CompactPossibilisticEpistemicState

&& !( classRight instanceof CompactPossibilisticEpistemicState)) {
266 LOGGER.error("The operands of a qualitative operator must be of

the same type");
267 }
268

269 if (lambdaLeft <= lambdaRight) {
270 return unifier;
271 }
272 return null;
273

274 } else {
275 LOGGER.error("The operands must be formulas in the language L_G

");
276 return null;
277 }
278 } else {
279 LOGGER.error("Formula is not ground.");
280 return null;
281 }
282 }
283 }
284

285 private Unifier entails(GreaterThanPlausibility greaterThanPlausibility , Unifier
unifier) throws Exception {

286 GreaterThanPlausibility groundGreaterThanPlausibility = greaterThanPlausibility
.substitute(unifier);

287 if (this.languageContains(groundGreaterThanPlausibility)) {
288 HashSet <CompactEpistemicState > relevantEpistemicStates =

getRelevantEpistemicStates(groundGreaterThanPlausibility);
289 for (CompactEpistemicState compactEpistemicState : relevantEpistemicStates)

{
290 Unifier unifierValid = compactEpistemicState.entails(

greaterThanPlausibility , unifier);
291 if (unifierValid != null) {
292 return unifierValid;
293 }
294 }
295 return null;
296 } else {
297 if (groundGreaterThanPlausibility.isGround () ) {
298 if (languageContains(groundGreaterThanPlausibility.getLeft ()) &&

languageContains(groundGreaterThanPlausibility.getRight ())) {
299 double lambdaLeft = 0;
300 double lambdaRight = 0;
301 CompactEpistemicState classLeft = null;
302 CompactEpistemicState classRight = null;
303
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304 StrongNegation negatedLeft = new StrongNegation(
groundGreaterThanPlausibility.getLeft ());

305 StrongNegation negatedRight = new StrongNegation(
groundGreaterThanPlausibility.getRight ());

306

307 for (CompactEpistemicState compactEpistemicState :
getRelevantEpistemicStates(negatedLeft)) {

308 classLeft = compactEpistemicState;
309 lambdaLeft = compactEpistemicState.getLambda(negatedLeft);
310 }
311

312 for (CompactEpistemicState compactEpistemicState :
getRelevantEpistemicStates(negatedRight)) {

313 classRight = compactEpistemicState;
314 lambdaRight = compactEpistemicState.getLambda(negatedRight);
315 }
316 if (classLeft instanceof CompactProbabilisticEpistemicState && !(

classRight instanceof CompactProbabilisticEpistemicState)) {
317 LOGGER.error("The operands of a qualitative operator must be of

the same type");
318 } else if (classLeft instanceof CompactPossibilisticEpistemicState

&& !( classRight instanceof CompactPossibilisticEpistemicState)) {
319 LOGGER.error("The operands of a qualitative operator must be of

the same type");
320 }
321

322 if (lambdaLeft < lambdaRight) {
323 return unifier;
324 }
325 return null;
326 } else {
327 //TODO: Add exception
328 LOGGER.error("The operands must be formulas in the language L_G");
329 return null;
330 }
331 } else {
332 LOGGER.error("Formula is not ground.");
333 return null;
334 }
335 }
336 }
337

338 private Unifier entails(Negation negation , Unifier unifier) throws Exception {
339 Negation groundNegation = (Negation) negation.substitute(unifier);
340 if (this.languageContains(groundNegation)) {
341 HashSet <CompactEpistemicState > relevantEpistemicStates =

getRelevantEpistemicStates(groundNegation);
342 for (CompactEpistemicState compactEpistemicState : relevantEpistemicStates)

{
343 Unifier unifierValid = compactEpistemicState.entails(negation , unifier)

;
344 if (unifierValid != null) {
345 return unifierValid;
346 }
347 }
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348 }
349 return null;
350 }
351

352 private Unifier entails(RelationalExpression relationalExpression , Unifier unifier)
throws Exception {

353 RelationalExpression groundRelationalExpression = (RelationalExpression)
relationalExpression.substitute(unifier);

354 if (this.languageContains(groundRelationalExpression)) {
355 HashSet <CompactEpistemicState > relevantEpistemicStates =

getRelevantEpistemicStates(groundRelationalExpression);
356 for (CompactEpistemicState compactEpistemicState : relevantEpistemicStates)

{
357 Unifier unifierValid = compactEpistemicState.entails(

relationalExpression , unifier);
358 if (unifierValid != null) {
359 return unifierValid;
360 }
361 }
362 }
363 return null;
364 }
365

366 @Override
367 public String toString () {
368 String string = "\nGlobal Uncertain Belief :\n\t";
369 Iterator it = epistemicStates.entrySet ().iterator ();
370 int i = 1;
371 while (it.hasNext ()) {
372 Map.Entry pair = (Map.Entry)it.next();
373 string += "Epistemic State " + i + ": \n\t\tDomain: " + pair.getKey ().

toString () + "\n\t\t" + pair.getValue ().toString ();
374 if (it.hasNext ()) {
375 string += ", \n\t";
376 }
377 i += 1;
378 }
379 string += "\n\t}";
380 return string;
381 }
382 }

A.2 EpistemicState Class

1 package main.java.uncertain_agentspeak.uncertainty;
2

3 public abstract class EpistemicState {
4

5 private HashSet <BeliefAtom > domain;
6

7 public void setDomain(HashSet <BeliefAtom > domain) {
8 this.domain = domain;
9 }

10
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11 public HashSet <BeliefAtom > getDomain () {
12 return domain;
13 }
14

15 public boolean languageContains(LogicalExpression logicalExpression) {
16 for (BeliefAtom beliefAtom : logicalExpression.getBeliefAtoms ()) {
17 if (! languageContains(beliefAtom)) {
18 return false;
19 }
20 }
21 return true;
22 }
23

24 public boolean languageContains(BeliefAtom beliefAtom) {
25 for (BeliefAtom beliefAtomDomain : domain) {
26 Unifier unifier = beliefAtom.getTerm ().unify(beliefAtomDomain.getTerm ());
27 if (unifier != null) {
28 return true;
29 }
30 }
31 return false;
32 }
33

34 public HashSet <Term > getUnifiers(BeliefAtom beliefAtom , Variable variable) {
35 HashSet <Term > terms = new HashSet <>();
36 for (BeliefAtom beliefAtomDomain : domain) {
37 Unifier unifier = beliefAtom.getTerm ().unify(beliefAtomDomain.getTerm ());
38 Term term = unifier.get(variable);
39 if (unifier != null) {
40 terms.add(term);
41 }
42 }
43 return terms;
44 }
45

46 public abstract double getLambda(LogicalExpression logicalExpression) throws
Exception;

47

48 public LogicalExpression pare(LogicalExpression logicalExpression) throws Exception
{

49 if(logicalExpression instanceof Contradiction) {
50 return this.pare(( Contradiction) logicalExpression);
51 } else if(logicalExpression instanceof Tautology) {
52 return this.pare(( Tautology) logicalExpression);
53 } else if(logicalExpression instanceof BeliefAtom) {
54 return this.pare(( BeliefAtom) logicalExpression);
55 } else if(logicalExpression instanceof BeliefLiteral) {
56 return this.pare(( BeliefLiteral) logicalExpression);
57 } else if(logicalExpression instanceof Conjunction) {
58 return this.pare(( Conjunction) logicalExpression);
59 } else if(logicalExpression instanceof Disjunction) {
60 return this.pare(( Disjunction) logicalExpression);
61 } else if(logicalExpression instanceof GreaterEqualsPlausibility) {
62 return this.pare(( GreaterEqualsPlausibility) logicalExpression);
63 } else if(logicalExpression instanceof GreaterThanPlausibility) {
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64 return this.pare(( GreaterThanPlausibility) logicalExpression);
65 } else if(logicalExpression instanceof StrongNegation) {
66 return this.pare(( StrongNegation) logicalExpression);
67 } else if(logicalExpression instanceof NegationAsFailure) {
68 return this.pare(( NegationAsFailure) logicalExpression);
69 } else if(logicalExpression instanceof Equal) {
70 return this.pare((Equal)logicalExpression);
71 } else if(logicalExpression instanceof NotEqual) {
72 return this.pare(( NotEqual)logicalExpression);
73 } else {
74 throw new UnsupportedOperationException("Formula not normalised");
75 }
76 }
77

78 public Conjunction pare(Conjunction conjunction) throws Exception {
79 return new Conjunction(this.pare(conjunction.getLeft ()), this.pare(conjunction.

getRight ()));
80 }
81

82 public Disjunction pare(Disjunction disjunction) throws Exception {
83 return new Disjunction(this.pare(disjunction.getLeft ()), this.pare(disjunction.

getRight ()));
84 }
85

86 public Primitive pare(GreaterEqualsPlausibility greaterEqualsPlausibility) throws
Exception {

87 double left = this.getLambda(new StrongNegation(greaterEqualsPlausibility.
getLeft ()));

88 double right = this.getLambda(new StrongNegation(greaterEqualsPlausibility.
getRight ()));

89 if (left <= right) {
90 return new Tautology ();
91 } else {
92 return new Contradiction ();
93 }
94 }
95

96 public Primitive pare(GreaterThanPlausibility greaterThanPlausibility) throws
Exception {

97 double left = this.getLambda(new StrongNegation(greaterThanPlausibility.getLeft
()));

98 double right = this.getLambda(new StrongNegation(greaterThanPlausibility.
getRight ()));

99 if (left < right) {
100 return new Tautology ();
101 } else {
102 return new Contradiction ();
103 }
104 }
105

106 public StrongNegation pare(StrongNegation strongNegation) throws Exception {
107 return new StrongNegation(this.pare(strongNegation.getTerm ()));
108 }
109

110 public Primitive pare(NegationAsFailure negationAsFailure) throws Exception {
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111 if (this.getLambda(new StrongNegation(negationAsFailure.getTerm ())) >= this.
getLambda(negationAsFailure.getTerm ())) {

112 return new Tautology ();
113 } else {
114 return new Contradiction ();
115 }
116 }
117

118 public Primitive pare(Equal equal) throws Exception {
119 if (equal.getLeft ().equals(equal.getRight ())) {
120 return new Tautology ();
121 } else {
122 return new Contradiction ();
123 }
124 }
125

126 public Primitive pare(NotEqual notEqual) throws Exception {
127 if (! notEqual.getLeft ().equals(notEqual.getRight ())) {
128 return new Tautology ();
129 } else {
130 return new Contradiction ();
131 }
132 }
133

134 public BeliefAtom pare(BeliefAtom beliefAtom) throws Exception {
135 return beliefAtom;
136 }
137

138 public BeliefLiteral pare(BeliefLiteral beliefLiteral) throws Exception {
139 return beliefLiteral;
140 }
141

142 public Contradiction pare(Contradiction contradiction) throws Exception {
143 return contradiction;
144 }
145

146 public Tautology pare(Tautology tautology) throws Exception {
147 return tautology;
148 }
149

150 public Unifier entails(LogicalExpression logicalExpression) throws Exception {
151 return entails(logicalExpression , new Unifier ());
152 }
153

154 public Unifier entails(LogicalExpression logicalExpression , Unifier unifier) throws
Exception {

155 LogicalExpression groundLogicalExpression = logicalExpression.substitute(
unifier);

156 if (! domain.containsAll(groundLogicalExpression.getBeliefAtoms ())) {
157 return null;
158 }
159 LogicalExpression pare = pare(groundLogicalExpression).convertToNNF ();
160 LogicalExpression pareNegation = pare(new StrongNegation(pare)).convertToNNF ();
161 double pareLambda = getLambda(pare);
162 double pareLambdaNegation = getLambda(pareNegation);
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163 if (pareLambda > pareLambdaNegation) {
164 return unifier;
165 } else {
166 return null;
167 }
168 }
169

170 }

A.3 CompactEpistemicState Class

1 package main.java.uncertain_agentspeak.uncertainty.epistemic_states;
2

3 public class CompactEpistemicState extends EpistemicState {
4

5 private HashMap <BeliefAtom , Weight > weightedBeliefBase;
6 private double totalWeight;
7

8 private final Weight initialWeight = new Weight (0,0);
9

10 public CompactEpistemicState(HashSet <BeliefAtom > domain) throws NotGroundException
{

11 for (BeliefAtom d : domain) {
12 if (!d.isGround ()) {
13 throw new NotGroundException("The belief atoms in the domain must be

ground");
14 }
15 }
16 super.setDomain(domain);
17 this.weightedBeliefBase = new HashMap <>();
18 this.totalWeight = 0;
19 }
20

21 public HashMap <BeliefAtom , Weight > getWeightedBeliefBase () {
22 return weightedBeliefBase;
23 }
24

25 public Weight getInitialWeight () {
26 return initialWeight;
27 }
28

29 public double getMinWeight () {
30 return Double.NEGATIVE_INFINITY;
31 }
32

33 public double getMaxWeight () {
34 return this.totalWeight;
35 }
36

37 public void revise(BeliefLiteral beliefLiteral , double weight) throws Exception {
38 BeliefAtom beliefAtom = beliefLiteral.getBeliefAtom ();
39

40 if (!this.getDomain ().contains(beliefAtom)) {
41 throw new Exception("Belief atom not in domain: " + beliefAtom.toString ());
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42 }
43

44 if (weightedBeliefBase.containsKey(beliefAtom)) {
45 Weight oldWeight = weightedBeliefBase.get(beliefAtom);
46 totalWeight -= oldWeight.max();
47 if (beliefLiteral.isPositive ()) {
48 oldWeight.addPositive(weight);
49 } else {
50 oldWeight.addNegative(weight);
51 }
52 if (oldWeight.equals(this.getInitialWeight ())) {
53 weightedBeliefBase.remove(beliefAtom);
54 } else {
55 weightedBeliefBase.put(beliefAtom , oldWeight);
56 totalWeight += oldWeight.max();
57 }
58 } else {
59 Weight newWeight = getInitialWeight ().copy();
60 if (beliefLiteral.isPositive ()) {
61 newWeight.addPositive(weight);
62 } else {
63 newWeight.addNegative(weight);
64 }
65 weightedBeliefBase.put(beliefAtom , newWeight);
66 totalWeight += newWeight.max();
67 }
68 }
69

70 protected Weight getWeight(BeliefAtom beliefAtom) throws Exception {
71 if (super.getDomain ().contains(beliefAtom)) {
72 if (this.weightedBeliefBase.containsKey(beliefAtom)) {
73 return this.weightedBeliefBase.get(beliefAtom);
74 } else {
75 return getInitialWeight ().copy();
76 }
77 } else {
78 throw new Exception("Belief atom not contained in domain");
79 }
80 }
81

82 protected double getWeight(BeliefLiteral beliefLiteral) throws Exception {
83 if (beliefLiteral.isPositive ()) {
84 return getWeight (( PositiveLiteral) beliefLiteral);
85 } else {
86 return getWeight (( NegativeLiteral) beliefLiteral);
87 }
88 }
89

90 protected double getWeight(PositiveLiteral positiveLiteral) throws Exception {
91 BeliefAtom beliefAtom = positiveLiteral.getBeliefAtom ();
92 if (getDomain ().contains(beliefAtom)) {
93 if (this.weightedBeliefBase.containsKey(beliefAtom)) {
94 return this.weightedBeliefBase.get(positiveLiteral.getBeliefAtom ()).

getPositive ();
95 } else {

96



A.3. COMPACTEPISTEMICSTATE CLASS

96 return this.getInitialWeight ().getPositive ();
97 }
98 } else {
99 throw new Exception("Belief atom not contained in domain");

100 }
101 }
102

103 protected double getWeight(NegativeLiteral negativeLiteral) throws Exception {
104 BeliefAtom beliefAtom = negativeLiteral.getBeliefAtom ();
105 if (super.getDomain ().contains(beliefAtom)) {
106 if (this.weightedBeliefBase.containsKey(beliefAtom)) {
107 return this.weightedBeliefBase.get(negativeLiteral.getBeliefAtom ()).

getNegative ();
108 } else {
109 return this.getInitialWeight ().getNegative ();
110 }
111 } else {
112 throw new Exception("Belief atom not contained in domain");
113 }
114 }
115

116

117 public double getLambda(LogicalExpression logicalExpression) throws Exception {
118 if (! logicalExpression.isGround ()) {
119 throw new Exception("Formula is not ground: " + logicalExpression);
120 }
121 LogicalExpression formula = this.pare(logicalExpression);
122 if (! formula.inNNF ()) {
123 formula = formula.convertToNNF(false);
124 }
125 return this.getLambda(formula , new HashSet <>());
126 }
127

128 private double getLambda(LogicalExpression logicalExpression , HashSet <BeliefLiteral
> boundedLiterals) throws Exception {

129 if (logicalExpression instanceof BeliefLiteral){
130 return this.getLambda (( BeliefLiteral) logicalExpression , boundedLiterals);
131 } else if (logicalExpression instanceof Conjunction) {
132 return this.getLambda (( Conjunction) logicalExpression , boundedLiterals);
133 } else if (logicalExpression instanceof Disjunction) {
134 return this.getLambda (( Disjunction) logicalExpression , boundedLiterals);
135 } else if (logicalExpression instanceof Contradiction) {
136 return this.getLambda (( Contradiction) logicalExpression , boundedLiterals);
137 } else if (logicalExpression instanceof Tautology) {
138 return this.getLambda (( Tautology) logicalExpression , boundedLiterals);
139 } else if (logicalExpression instanceof NegationAsFailure) {
140 return this.getLambda (( NegationAsFailure) logicalExpression ,

boundedLiterals);
141 } else if (logicalExpression instanceof GreaterEqualsPlausibility) {
142 return this.getLambda (( GreaterEqualsPlausibility) logicalExpression ,

boundedLiterals);
143 } else if (logicalExpression instanceof GreaterThanPlausibility) {
144 return this.getLambda (( GreaterThanPlausibility) logicalExpression ,

boundedLiterals);
145 } else if (logicalExpression instanceof Equal) {
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146 return this.getLambda ((Equal) logicalExpression , boundedLiterals);
147 } else if (logicalExpression instanceof NotEqual) {
148 return this.getLambda (( NotEqual) logicalExpression , boundedLiterals);
149 } else {
150 throw new Exception("Formula not normalised");
151 }
152 }
153

154 public double getLambda(BeliefLiteral beliefLiteral , HashSet <BeliefLiteral >
boundedLiterals) throws Exception {

155 HashSet <BeliefLiteral > copyBoundedLiterals = (HashSet <BeliefLiteral >)
boundedLiterals.clone();

156 copyBoundedLiterals.add(beliefLiteral);
157 double sum = 0;
158 for (BeliefLiteral boundedLiteral : boundedLiterals){
159 if (copyBoundedLiterals.contains(boundedLiteral.negation ())) {
160 return this.getLambda(new Contradiction (), copyBoundedLiterals);
161 } else {
162 Weight weight = this.getWeight(boundedLiteral.getBeliefAtom ());
163 if (boundedLiteral.isPositive ()) {
164 sum += Math.abs(weight.getPositive () - weight.max());
165 } else {
166 sum += Math.abs(weight.getNegative () - weight.max());
167 }
168 }
169 }
170 return this.getMaxWeight () - sum;
171 }
172

173 public double getLambda(Contradiction contradiction , HashSet <BeliefLiteral >
boundedLiterals) {

174 return this.getMinWeight ();
175 }
176

177 public double getLambda(Tautology tautology , HashSet <BeliefLiteral > boundedLiterals
) {

178 return this.getMaxWeight ();
179 }
180

181 public double getLambda(Conjunction conjunction , HashSet <BeliefLiteral >
boundedLiterals) throws Exception {

182 HashSet <BeliefLiteral > copyBoundedLiterals = (HashSet <BeliefLiteral >)
boundedLiterals.clone();

183 if (conjunction.getLeft ().isConjunctive () && conjunction.getRight ().
isDisjunctive ()) {

184 copyBoundedLiterals.addAll(conjunction.getLeft ().getBeliefLiterals ());
185 return this.getLambda(conjunction.getRight (), copyBoundedLiterals);
186 } else if (conjunction.getLeft ().isDisjunctive () && conjunction.getRight ().

isConjunctive ()) {
187 copyBoundedLiterals.addAll(conjunction.getRight ().getBeliefLiterals ());
188 return this.getLambda(conjunction.getLeft (), copyBoundedLiterals);
189 } else {
190 throw new Exception("Formula not in language " + this);
191 }
192 }
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193

194 public double getLambda(Disjunction disjunction , HashSet <BeliefLiteral >
boundedLiterals) throws Exception {

195 return Math.max(getLambda(disjunction.getLeft (), boundedLiterals),getLambda(
disjunction.getRight (), boundedLiterals));

196 }
197

198 private double getLambda(NegationAsFailure negationAsFailure , HashSet <BeliefLiteral
> boundedLiterals) throws Exception {

199 return this.getLambda(this.pare(negationAsFailure), boundedLiterals);
200 }
201

202 private double getLambda(GreaterEqualsPlausibility greaterEqualsPlausibility ,
HashSet <BeliefLiteral > boundedLiterals) throws Exception {

203 return this.getLambda(this.pare(greaterEqualsPlausibility), boundedLiterals);
204 }
205

206 private double getLambda(GreaterThanPlausibility greaterThanPlausibility , HashSet <
BeliefLiteral > boundedLiterals) throws Exception {

207 return this.getLambda(this.pare(greaterThanPlausibility), boundedLiterals);
208 }
209

210 private double getLambda(Equal equal , HashSet <BeliefLiteral > boundedLiterals)
throws Exception {

211 return this.getLambda(this.pare(equal), boundedLiterals);
212 }
213

214 private double getLambda(NotEqual notEqual , HashSet <BeliefLiteral > boundedLiterals)
throws Exception {

215 return this.getLambda(this.pare(notEqual), boundedLiterals);
216 }
217

218

219 @Override
220 public String toString () {
221 String string = "{";
222 Iterator it = weightedBeliefBase.entrySet ().iterator ();
223 while (it.hasNext ()) {
224 Map.Entry pair = (Map.Entry)it.next();
225 string += "[" + pair.getKey ().toString () + ", " + pair.getValue ().toString

() + "]";
226 if (it.hasNext ()) {
227 string += ", ";
228 }
229 it.remove (); // avoids a ConcurrentModificationException
230 }
231 string += "}";
232 return string;
233 }
234 }

A.4 CompactProbabilisticEpistemicState Class

1 package main.java.uncertain_agentspeak.uncertainty.epistemic_states.
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compact_epistemic_states;
2

3 public class CompactProbabilisticEpistemicState extends CompactEpistemicState {
4

5 public CompactProbabilisticEpistemicState(HashSet <BeliefAtom > atoms) throws
Exception {

6 super(atoms);
7 }
8

9 public double getMinWeight () {
10 return 0;
11 }
12

13 public double getMaxWeight () {
14 return 1;
15 }
16

17 @Override
18 public Weight getInitialWeight () {
19 return new Weight (0.5, 0.5);
20 }
21

22 @Override
23 public void revise(BeliefLiteral beliefLiteral , double weight) throws Exception {
24 BeliefAtom beliefAtom = beliefLiteral.getBeliefAtom ();
25

26 if (!super.getDomain ().contains(beliefAtom)) {
27 throw new Exception("Belief atom is not in domain: " + beliefAtom.toString

());
28 }
29

30 /** If belief atom in domain revise it’s corresponding weight , otherwise revise
initial probabilistic weight

31 * **/
32 Weight w;
33 if (this.getWeightedBeliefBase ().containsKey(beliefAtom)) {
34 w = this.getWeightedBeliefBase ().get(beliefAtom);
35 } else {
36 w = this.getInitialWeight ().copy();
37 }
38

39 /** Check if the belief literal is positive or negative and revise accordingly
40 * **/
41 if (beliefLiteral.isPositive ()) {
42 w.setPositive(weight);
43 w.setNegative(this.getMaxWeight () - weight);
44 } else {
45 w.setNegative(weight);
46 w.setPositive(this.getMaxWeight () - weight);
47 }
48

49 /** If the atom is contained in the weighted belief base and it’s revised
weight is equal to the initial

50 * probabilistic weight then remove it from the weighted belief base , otherwise
put the belief atom and
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51 * its associated weight into the weighted belief base.
52 * **/
53 if (this.getWeightedBeliefBase ().containsKey(beliefAtom) && w.equals(this.

getInitialWeight ())) {
54 this.getWeightedBeliefBase ().remove(beliefAtom);
55 } else {
56 this.getWeightedBeliefBase ().put(beliefAtom , w);
57 }
58

59 }
60

61 public double getProbability(BeliefLiteral beliefLiteral) throws Exception {
62 return this.getWeight(beliefLiteral);
63 }
64

65 @Override
66 public double getLambda(BeliefLiteral beliefLiteral , HashSet <BeliefLiteral >

beliefLiterals) throws Exception {
67 return this.getProbability(beliefLiteral);
68 }
69

70 @Override
71 public double getLambda(Contradiction contradiction , HashSet <BeliefLiteral >

boundedLiterals) {
72 return this.getMinWeight ();
73 }
74

75 @Override
76 public double getLambda(Tautology tautology , HashSet <BeliefLiteral > boundedLiterals

) {
77 return this.getMaxWeight ();
78 }
79

80 @Override
81 public double getLambda(Conjunction conjunction , HashSet <BeliefLiteral >

boundedLiterals) throws Exception {
82 SATsolver satSolver = new SATsolver ();
83 if (satSolver.solve(conjunction)) {
84 return this.getLambda(conjunction.getLeft ()) * this.getLambda(conjunction.

getRight ());
85 } else {
86 return this.getMinWeight ();
87 }
88

89 }
90

91 @Override
92 public double getLambda(Disjunction disjunction , HashSet <BeliefLiteral >

boundedLiterals) throws Exception {
93 return this.getLambda(disjunction.getLeft ()) + this.getLambda(disjunction.

getRight ()) - this.getLambda(new Conjunction(disjunction.getLeft (), disjunction.
getRight ()));

94 }
95

96 @Override
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97 public String toString () {
98 String string = "{ ";
99 Iterator it = this.getWeightedBeliefBase ().entrySet ().iterator ();

100 while (it.hasNext ()) {
101 Map.Entry pair = (Map.Entry)it.next();
102 string += "\n\t\t\tProb( " + pair.getKey ().toString () + ", " + pair.

getValue ().toString () + " )";
103 if (it.hasNext ()) {
104 string += ", ";
105 }
106 }
107 string += " \n\t\t}";
108 return string;
109 }
110 }

A.5 CompactPossibilisticEpistemicState Class

1 package main.java.uncertain_agentspeak.uncertainty.epistemic_states.
compact_epistemic_states;

2

3 public class CompactPossibilisticEpistemicState extends CompactEpistemicState {
4

5 public CompactPossibilisticEpistemicState(HashSet <BeliefAtom > atoms) throws
Exception {

6 super(atoms);
7 }
8

9 @Override
10 public HashSet <BeliefAtom > getDomain () {
11 return super.getDomain ();
12 }
13

14 @Override
15 public HashMap <BeliefAtom , Weight > getWeightedBeliefBase () {
16 return super.getWeightedBeliefBase ();
17 }
18

19 @Override
20 public Weight getInitialWeight () {
21 return new Weight(1, 1);
22 }
23

24 @Override
25 public double getMinWeight () {
26 return 0;
27 }
28

29 @Override
30 public double getMaxWeight () {
31 return 1;
32 }
33

34 @Override
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35 /** Revise as N(beliefLiteral) >= weight **/
36 public void revise(BeliefLiteral beliefLiteral , double weight) throws Exception {
37 BeliefAtom beliefAtom = beliefLiteral.getBeliefAtom ();
38

39 if (!this.getDomain ().contains(beliefAtom)) {
40 throw new Exception("Belief atom is not in domain");
41 }
42

43 for (BeliefAtom beliefAtomDomain : this.getDomain ()) {
44

45 /** If belief atom in domain revise it’s corresponding weight , otherwise
revise initial probabilistic weight

46 * **/
47 Weight w;
48 if (this.getWeightedBeliefBase ().containsKey(beliefAtomDomain)) {
49 w = this.getWeightedBeliefBase ().get(beliefAtomDomain);
50 } else {
51 w = this.getInitialWeight ().copy();
52 }
53

54 /** Check if the belief literal equals the domain belief atom , if it is
positive or negative and then

55 * revise accordingly
56 * **/
57 double alpha;
58 Weight oldWeight = getPossibilityMeasure(beliefAtom);
59 if (beliefLiteral.isPositive ()) {
60 alpha = Math.max(oldWeight.getPositive (), 1 - weight);
61 } else {
62 alpha = Math.max(1 - weight , oldWeight.getNegative ());
63 }
64 if (beliefLiteral.getBeliefAtom ().equals(beliefAtomDomain)) {
65 if (beliefLiteral.isPositive ()) {
66 w.setNegative(Math.min(w.getNegative (), Math.min(1-weight , alpha)))

;
67 w.setPositive(Math.min(w.getPositive (), alpha));
68 } else {
69 w.setNegative(Math.min(w.getNegative (), alpha));
70 w.setPositive(Math.min(w.getPositive (),Math.min(1-weight , alpha)));
71 }
72 } else {
73

74 w.setPositive(Math.min(w.getPositive (),alpha));
75 w.setNegative(Math.min(w.getNegative (),alpha));
76 }
77

78

79 /** If the atom is contained in the weighted belief base and it’s revised
weight is equal to the initial

80 * possibilistic weight then remove it from the weighted belief base ,
otherwise put the belief atom and

81 * its associated weight into the weighted belief base.
82 * **/
83 if (w.equals(this.getInitialWeight ())) {
84 this.getWeightedBeliefBase ().remove(beliefAtomDomain);
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85 } else {
86 this.getWeightedBeliefBase ().put(beliefAtomDomain , w);
87 }
88 }
89 }
90

91 public Weight getPossibilityMeasure(BeliefAtom beliefAtom) throws Exception {
92 return this.getWeight(beliefAtom);
93 }
94

95 public double getPossibilityMeasure(BeliefLiteral beliefLiteral) throws Exception {
96 return this.getWeight(beliefLiteral);
97 }
98

99 @Override
100 public double getLambda(BeliefLiteral beliefLiteral , HashSet <BeliefLiteral >

boundedLiterals) throws Exception {
101 HashSet <BeliefLiteral > boundedLiteralsCopy = (HashSet <BeliefLiteral >)

boundedLiterals.clone();
102 boundedLiteralsCopy.add(beliefLiteral);
103 for (BeliefLiteral boundedLiteral : boundedLiterals) {
104 if (boundedLiteralsCopy.contains(boundedLiteral.negation ())) {
105 return getLambda(new Contradiction (), boundedLiteralsCopy);
106 }
107 }
108 return getPossibilityMeasure(beliefLiteral);
109 }
110

111 @Override
112 public String toString () {
113 String string = "{ ";
114 Iterator it = this.getWeightedBeliefBase ().entrySet ().iterator ();
115 while (it.hasNext ()) {
116 Map.Entry pair = (Map.Entry)it.next();
117 string += "\n\t\t\tPi( " + pair.getKey ().toString () + ", " + pair.getValue

().toString () + " )";
118 if (it.hasNext ()) {
119 string += ", ";
120 }
121 }
122 string += " \n\t\t}";
123 return string;
124 }
125

126 }
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This appendix provides the class diagrams for the different types of logical expressions.

All of the classes shown here are extensions of the logical expression class as shown in

Figure 3.6.

Figure B.1: Relational expression class diagrams
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Figure B.2: Terminal class diagrams



Figure B.3: Operator class diagrams

107





BIBLIOGRAPHY

Alchourron, Carlos E., Peter Gardenfors, and David Makinson (1985). “On the Logic of Theory

Change: Partial Meet Contraction and Revision Functions”. In: J. Symbolic Logic 50.2, pp. 510–

530.

Ana, Casali, Godo Lluis, and Sierra Carles (2005). “Graded BDI Models for Agent Architec-

tures”. In: Computational Logic in Multi-Agent Systems. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 126–143.

Andrew, Alex M. (2001). “REASONING ABOUT RATIONAL AGENTS, by Michael Wooldridge,

MIT Press, Cambridge, Mass., 200, Xi+227Pp., ISBN 0-262-23213 (Hardback &Pound;23.50)”.

In: Robotica 19.4, pp. 459–462.

Ash, R.B. (2012). Basic Probability Theory. Dover Books on Mathematics Series. Dover Publica-

tions, Incorporated.

Baader, Franz and Wayne Snyder (1999). Unification Theory.

Bauters, Kim et al. (2017). “Managing different sources of uncertainty in a BDI framework in a

principled way with tractable fragments”. In: Journal of Artificial Intelligence Research 58,

pp. 731–775.

Benferhat, Salem, Didier Dubois, and Henri Prade (1998). “Practical Handling of Exception-

Tainted Rules and Independence Information in Possibilistic Logic”. In: Applied Intelligence

9.2, pp. 101–127.

Bordini, Rafael H. and Jomi F. Hübner (2006). “BDI agent programming in AgentSpeak using

Jason”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) 3900 LNAI, pp. 143–164.

Bordini, Rafael H and Jomi F Hübner (2007). “A Java-based interpreter for an extended version

of AgentSpeak”. In:

Bordini, Rafael H., Jomi Fred Hübner, and Michael Wooldridge (2007). Programming Multi-Agent

Systems in AgentSpeak using Jason, pp. 1–273.

Bordini, Rafael H. and Álvaro F. Moreira (2002). “Proving the Asymmetry Thesis Principles for a

BDI Agent-Oriented Programming Language”. In: Electronic Notes in Theoretical Computer

Science 70.5. CLIMA’2002, Computational Logic in Multi-Agent Systems (FLoC Satellite

Event), pp. 108–125.

109



BIBLIOGRAPHY

Bordini, Rafael H. and Álvaro F. Moreira (2004). “Proving BDI Properties of Agent-Oriented

Programming Languages: The asymmetry thesis principles in AgentSpeak(L)”. In: Annals of

Mathematics and Artificial Intelligence 42.1, pp. 197–226.

Bratman, Michael (1987). Intention, Plans, and Practical Reason. Center for the Study of Lan-

guage and Information.

Casali, Ana, Lluís Godo, and Carles Sierra (2011). “A graded BDI agent model to represent and

reason about preferences”. In: Artificial Intelligence 175.7. Representing, Processing, and

Learning Preferences: Theoretical and Practical Challenges, pp. 1468–1478.

Clement, Daniel (1987). The Intentional Stance.

Cohen, Philip R. and Hector J. Levesque (1990). “Intention is choice with commitment”. In:

Artificial Intelligence 42.2, pp. 213–261.

Dastani, Mehdi (2008). “2APL: A Practical Agent Programming Language”. In: Autonomous

Agents and Multi-Agent Systems 16.3, pp. 214–248.

Dubois, Didier, Serafin Moral, and Henri Prade (1998). “Belief Change Rules in Ordinal and

Numerical Uncertainty Theories”. In: Belief Change. Ed. by Didier Dubois and Henri Prade.

Dordrecht: Springer Netherlands, pp. 311–392.

Dubois, Didier and Henri Prade (2015). “Possibility Theory and Its Applications: Where Do We

Stand?” In: 18.

Edwin, Jaynes (2003). Probability Theory: the Logic of Science. Cambridge university press.

Fernández, Víctor et al. (2010). “Analysis of Jason’s performance for crowd simulations”. In:

Georgeff, Michael et al. (1999). “The Belief-Desire-Intention Model of Agency”. In: Intelligent

Agents V: Agents Theories, Architectures, and Languages. Ed. by Jörg P. Müller, Anand S. Rao,

and Munindar P. Singh. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–10.

Herzig, Andreas et al. (2017). “BDI Logics for BDI Architectures: Old Problems, New Perspectives”.

In: KI - Künstliche Intelligenz 31.1, pp. 73–83.

Hübner, Jomi and Jaime Sichman (2009). SACI: Simple Agent Communication Infrastructure.

Ingrand, Francois F., Michael P. Georgeff, and Anand S. Rao (1992). “An Architecture for Real-

Time Reasoning and System Control”. In: IEEE Expert: Intelligent Systems and Their Appli-

cations 7.6, pp. 34–44.

Jennings, Nicholas R., Katia Sycara, and Michael Wooldridge (1998). “A Roadmap of Agent

Research and Development”. In: Autonomous Agents and Multi-Agent Systems 1.1, pp. 7–38.

Kern-Isberner, Gabriele and Thomas Lukasiewicz (2017). “Special Issue on Challenges for Rea-

soning under Uncertainty, Inconsistency, Vagueness, and Preferences”. In: KI - Künstliche

Intelligenz 31.1, pp. 5–8.

Kravari, Kalliopi and Nick Bassiliades (2015a). “A Survey of Agent Platforms”. In: Journal of

Artificial Societies and Social Simulation 18.1.

— (2015b). “A Survey of Agent Platforms”. In: Journal of Artificial Societies and Social Simula-

tion 18.1, p. 11.

110



BIBLIOGRAPHY

Kwisthout, Johan and Mehdi Dastani (2006). “Modelling Uncertainty in Agent Programming”.

In: Proceedings of the Third International Conference on Declarative Agent Languages and

Technologies. DALT’05. Utrecht, The Netherlands: Springer-Verlag, pp. 17–32.

Ma, Jianbing and Weiru Liu (2011a). “A framework for managing uncertain inputs: An ax-

iomization of rewarding”. In: International Journal of Approximate Reasoning 52.7, pp. 917–

934.

— (2011b). “A framework for managing uncertain inputs: An axiomization of rewarding”. In:

International Journal of Approximate Reasoning 52.7. Selected Papers - Uncertain Reasoning

Track - FLAIRS 2009, pp. 917–934.

Machado, Rodrigo and Rafael Bordini (2003a). Running AgentSpeak(L) Agents on SIM AGENT.

— (2003b). Running AgentSpeak(L) Agents on SIM AGENT.

Mascardi, Viviana, Daniela Demergasso, and Davide Ancona (2005). Languages for Programming

BDI-style Agents: an Overview.

Moreira, Alvaro F. and Rafael H. Bordini (2002). An Operational Semantics for a BDI Agent-

Oriented Programming Language.

Moreira, Álvaro F., Renata Vieira, and Rafael H. Bordini (2004). “Extending the Operational

Semantics of a BDI Agent-Oriented Programming Language for Introducing Speech-Act

Based Communication”. In: Declarative Agent Languages and Technologies. Ed. by João Leite

et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 135–154.

Nair, Ranjit and Milind Tambe (2005). “Hybrid BDI-POMDP Framework for Multiagent Teaming”.

In: J. Artif. Int. Res. 23.1, pp. 367–420.

Nebel, B. (1995). “Based Revision Operations and Schemes: Semantics, Representation, and

Complexity”. In: Proceedings of the ISSEK94 Workshop on Mathematical and Statistical

Methods in Artificial Intelligence. Ed. by G. Della Riccia, R. Kruse, and R. Viertl. Vienna:

Springer Vienna, pp. 157–170.

Parr, Terence (2013). The Definitive ANTLR 4 Reference. 2nd. Pragmatic Bookshelf.

Rao, Anand S. (1996). “AgentSpeak(L): BDI agents speak out in a logical computable language”.

In: L, pp. 42–55.

Rao, Anand S. and Michael P. Georgeff (1991). “Modeling Rational Agents Within a BDI-

architecture”. In: Proceedings of the Second International Conference on Principles of Knowl-

edge Representation and Reasoning. KR’91. Cambridge, MA, USA: Morgan Kaufmann Pub-

lishers Inc., pp. 473–484.

Spohn, Wolfgang (1988). “Ordinal Conditional Functions: A Dynamic Theory of Epistemic States”.

In: Causation in Decision, Belief Change, and Statistics: Proceedings of the Irvine Conference

on Probability and Causation. Ed. by William L. Harper and Brian Skyrms. Dordrecht:

Springer Netherlands, pp. 105–134.

TILAB (2009). JADE (Java Agent DEvelopment Framework). http://jade.tilab.com/.

111

http://jade.tilab.com/


BIBLIOGRAPHY

Williams, Mary-Anne (1995). “Iterated Theory Base Change: A Computational Model”. In: Pro-

ceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2.

IJCAI’95. Montreal, Quebec, Canada: Morgan Kaufmann Publishers Inc., pp. 1541–1547.

Zadeh, L. A. (1999). “Fuzzy Sets As a Basis for a Theory of Possibility”. In: Fuzzy Sets Syst. 100,

pp. 9–34.

112


	List of Tables
	List of Figures
	Introduction
	Background
	Research Challenges
	Aims and Objectives

	Summary

	Literature Review
	Belief Desire Intention (BDI) Architecture
	AgentSpeak(L)
	AgentSpeak(L) Syntax
	Informal Semantics
	Summary

	Uncertainty Modelling
	Probability Theory
	Possibility Theory
	Summary

	Uncertainty Modelling in BDI Agents
	CAN+ (Bauters et al., 2017)

	Multi-Agent System Development Tools
	Summary

	Extending AgentSpeak(L) to Model and Reason with Uncertainty
	AgentSpeak(L) Modifications
	Syntax
	Terms
	Unification

	Logical Expressions for Plan Contexts and Test Goals
	Belief Base
	Epistemic States
	Global Uncertain Belief

	Goals
	Triggering Events
	Unification

	Actions
	Plans
	Operational Semantics
	Events
	Intentions
	Agent Interpreter


	MAS Simulation Environment
	Simulation Environment
	Environment
	Grid World

	Multi-Agent System Projects
	Syntax
	Infrastructure

	Mars Exploration Scenario
	Background
	Environment
	Agents
	mas Definition and Runtime


	Discussion
	Conclusion
	Belief Base Java Classes
	GlobalUncertainBelief Class
	EpistemicState Class
	CompactEpistemicState Class
	CompactProbabilisticEpistemicState Class
	CompactPossibilisticEpistemicState Class

	Logical Expression Class Diagrams
	Bibliography

